original image 이 이미지에서 연결된 경계의 클러스터를 감지하려고합니다. 이 가장자리의 길이와 개별 클러스터의 회전 반경을 찾아야합니다. opencv 2.4.13을 사용하고 있습니다. 다음 코드를 사용하여 등고선을 사용하여 대량 클러스터를 감지했습니다.가장자리 (연결된 가장자리)를 감지하고 가장자리 길이 및 연결된 구성 요소를 찾습니다. 회전 반경
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace cv;
using namespace std;
Mat src; Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);
/// Function header
void thresh_callback(int, void*);
/** @function main */
int main(int argc, char** argv)
{
/// Load source image and convert it to gray
src = imread(argv[1], 1);
/// Convert image to gray and blur it
cvtColor(src, src_gray, CV_BGR2GRAY);
blur(src_gray, src_gray, Size(3,3));
/// Create Window
char* source_window = "Source";
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, src);
createTrackbar(" Canny thresh:", "Source", &thresh, max_thresh, thresh_callback);
thresh_callback(0, 0);
waitKey(0);
return(0);
}
/** @function thresh_callback */
void thresh_callback(int, void*)
{
Mat canny_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
/// Detect edges using canny
Canny(src_gray, canny_output, thresh, thresh*2, 3);
/// Find contours
findContours(canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
/// Get the moments
vector<Moments> mu(contours.size());
for(int i = 0; i < contours.size(); i++)
{ mu[i] = moments(contours[i], false); }
/// Get the mass centers:
vector<Point2f> mc(contours.size());
for(int i = 0; i < contours.size(); i++)
{ mc[i] = Point2f(mu[i].m10/mu[i].m00 , mu[i].m01/mu[i].m00); }
/// Draw contours
Mat drawing = Mat::zeros(canny_output.size(), CV_8UC3);
Mat drawing2 = Mat::zeros(canny_output.size(), CV_8UC3);
for(int i = 0; i< contours.size(); i++)
{if(arcLength(contours[i], true)>900)
{Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255));
drawContours(drawing, contours, i, color, 2, 8, hierarchy, 0, Point());
circle(drawing, mc[i], 4, color, -1, 8, 0);}
}
int length=0;
int j=0;
for(int i = 0; i< contours.size(); i++)
{
if(arcLength(contours[i], true)>length)
{
length=arcLength(contours[i], true);
j=i;
}
}
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255));
drawContours(drawing2, contours, j, color, 2, 8, hierarchy, 0, Point());
circle(drawing2, mc[j], 4, color, -1, 8, 0);
/// Show in a window
namedWindow("Contours", CV_WINDOW_AUTOSIZE);
imshow("Contours", drawing);
namedWindow("Contours2", CV_WINDOW_AUTOSIZE);
imshow("Contours_max", drawing2);
/// Calculate the area with the moments 00 and compare with the result of the OpenCV function
printf("\t Info: Area and Contour Length \n");
for(int i = 0; i< contours.size(); i++)
{
if(arcLength(contours[i], true)>900)
{printf(" * Contour[%d] - Area (M_00) = %.2f - Area OpenCV: %.2f - Length: %.2f \n", i, mu[i].m00, contourArea(contours[i]), arcLength(contours[i], true));
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255));
drawContours(drawing, contours, i, color, 2, 8, hierarchy, 0, Point());
circle(drawing, mc[i], 4, color, -1, 8, 0);}
}
}
윤곽은 공통 공유 에지에서 달라지고 논리적으로는 같은 클러스터이어야합니다. 내가주고있는 다음 윤곽선 이미지. contour extracted above a certain length
동일한 공유 에지를 갖는 많은 등고선이 다른 윤곽선으로 분리되어 표시됩니다. 나는 그것들을 같은 경계 클러스터의 일부로 원한다. 또한 경계의 길이와 회전 반경을 감지하는 방법을 제안 해주십시오. 도와주세요.