0
lmerTest의 처리 단계 (모델) 결과가 비정상적인 이유가 혼란 스럽습니다.lmerTest를 사용하여 step()이 전체 모델에 대한 후방 제거에서 이상한 결과를 반환하는 이유
m0 <- lmer(seed ~ connection*age + (1|unit), data = test)
step(m0)
참고 : "연결"모두와 "나이는"왜 나를 최종 모델이 표시되지 않습니다
Random effects:
Chi.sq Chi.DF elim.num p.value
unit 0.25 1 1 0.6194
Fixed effects:
Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value Pr(>F)
connection 1 0.01746 0.017457 1.5214 0.22142
age 1 0.07664 0.076643 6.6794 0.01178 *
connection:age 1 0.04397 0.043967 3.8317 0.05417 .
Residuals 72 0.82617 0.011475
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Least squares means:
Estimate Standard Error DF t-value Lower CI Upper CI p-value
Final model:
Call:
lm(formula = fo, data = mm, contrasts = l.lmerTest.private.contrast)
Coefficients:
(Intercept) connectionD ageB connectionD:ageB
-0.84868 -0.07852 0.01281 0.09634
as.factor()
을 설정 한?
많이 고마워요! 귀하의 제안은 완전히 옳습니다! – Elton