최소 힙을 사용하여 Dijkstra에 대한 구현이 있고 최대 힙으로 min 힙을 변경하여 최대 경로를 찾으려고했으나 출력이 잘못되었습니다. 그래서이 구현을 최대 힙으로 변경할 수 있도록 도와 주시겠습니까? 최소 힙 대신 최대 힙을 사용 다 익스트라의 알고리즘을 구현 많은 감사 최소 힙에서 최대 힙으로이 코드를 변경하는 방법
public class DikjstraAlgorithm {
public static void main(String[] args) {
Graph graph = new Graph(9);
for (int i = 0; i < 9; i++) {
graph.addVertex(i);
}
graph.addEdge(0, 1, 4);
graph.addEdge(0, 7, 8);
graph.addEdge(1, 0, 4);
graph.addEdge(1, 7, 11);
graph.addEdge(1, 2, 8);
graph.addEdge(2, 1, 8);
graph.addEdge(2, 3, 7);
graph.addEdge(2, 8, 2);
graph.addEdge(2, 5, 4);
graph.addEdge(3, 2, 7);
graph.addEdge(3, 4, 9);
graph.addEdge(3, 5, 14);
graph.addEdge(4, 3, 9);
graph.addEdge(4, 5, 10);
graph.addEdge(5, 2, 4);
graph.addEdge(5, 3, 14);
graph.addEdge(5, 4, 10);
graph.addEdge(5, 6, 2);
graph.addEdge(6, 5, 2);
graph.addEdge(6, 7, 1);
graph.addEdge(6, 8, 6);
graph.addEdge(7, 0, 8);
graph.addEdge(7, 1, 11);
graph.addEdge(7, 6, 1);
graph.addEdge(7, 8, 7);
graph.addEdge(8, 2, 2);
graph.addEdge(8, 6, 6);
graph.addEdge(8, 7, 7);
graph.findShortestPaths(0);
}
public static class Graph {
Vertex[] vertices;
int maxSize;
int size;
public Graph(int maxSize) {
this.maxSize = maxSize;
vertices = new Vertex[maxSize];
}
public void addVertex(int name) {
vertices[size++] = new Vertex(name);
}
public void addEdge(int sourceName, int destinationName, int weight) {
int srcIndex = sourceName;
int destiIndex = destinationName;
vertices[srcIndex].adj = new Neighbour(destiIndex, weight, vertices[srcIndex].adj);
vertices[destiIndex].indegree++;
}
public void findShortestPaths(int sourceName){
applyDikjstraAlgorith(vertices[sourceName]);
for(int i = 0; i < maxSize; i++){
System.out.println("Distance of "+vertices[i].name+" from Source: "+ vertices[i].cost);
}
}
public class Vertex {
int cost;
int name;
Neighbour adj;
int indegree;
State state;
public Vertex(int name) {
this.name = name;
cost = Integer.MAX_VALUE;
state = State.NEW;
}
public int compareTo(Vertex v) {
if (this.cost == v.cost) {
return 0;
}
if (this.cost < v.cost) {
return -1;
}
return 1;
}
}
public enum State {
NEW, IN_Q, VISITED
}
public class Neighbour {
int index;
Neighbour next;
int weight;
Neighbour(int index, int weight, Neighbour next) {
this.index = index;
this.next = next;
this.weight = weight;
}
}
public void applyDikjstraAlgorith(Vertex src) {
Heap heap = new Heap(maxSize);
heap.add(src);
src.state = State.IN_Q;
src.cost = 0;
while (!heap.isEmpty()) {
Vertex u = heap.remove();
u.state = State.VISITED;
Neighbour temp = u.adj;
while (temp != null) {
if (vertices[temp.index].state == State.NEW) {
heap.add(vertices[temp.index]);
vertices[temp.index].state = State.IN_Q;
}
if (vertices[temp.index].cost > u.cost + temp.weight) {
vertices[temp.index].cost = u.cost + temp.weight;
heap.heapifyUP(vertices[temp.index]);
}
temp = temp.next;
}
}
}
public static class Heap {
private Vertex[] heap;
private int maxSize;
private int size;
public Heap(int maxSize) {
this.maxSize = maxSize;
heap = new Vertex[maxSize];
}
public void add(Vertex u) {
heap[size++] = u;
heapifyUP(size - 1);
}
public void heapifyUP(Vertex u) {
for (int i = 0; i < maxSize; i++) {
if (u == heap[i]) {
heapifyUP(i);
break;
}
}
}
public void heapifyUP(int position) {
int currentIndex = position;
Vertex currentItem = heap[currentIndex];
int parentIndex = (currentIndex - 1)/2;
Vertex parentItem = heap[parentIndex];
while (currentItem.compareTo(parentItem) == -1) {
swap(currentIndex, parentIndex);
currentIndex = parentIndex;
if (currentIndex == 0) {
break;
}
currentItem = heap[currentIndex];
parentIndex = (currentIndex - 1)/2;
parentItem = heap[parentIndex];
}
}
public Vertex remove() {
Vertex v = heap[0];
swap(0, size - 1);
heap[size - 1] = null;
size--;
heapifyDown(0);
return v;
}
public void heapifyDown(int postion) {
if (size == 1) {
return;
}
int currentIndex = postion;
Vertex currentItem = heap[currentIndex];
int leftChildIndex = 2 * currentIndex + 1;
int rightChildIndex = 2 * currentIndex + 2;
int childIndex;
if (heap[leftChildIndex] == null) {
return;
}
if (heap[rightChildIndex] == null) {
childIndex = leftChildIndex;
} else if (heap[rightChildIndex].compareTo(heap[leftChildIndex]) == -1) {
childIndex = rightChildIndex;
} else {
childIndex = leftChildIndex;
}
Vertex childItem = heap[childIndex];
while (currentItem.compareTo(childItem) == 1) {
swap(currentIndex, childIndex);
currentIndex = childIndex;
currentItem = heap[currentIndex];
leftChildIndex = 2 * currentIndex + 1;
rightChildIndex = 2 * currentIndex + 2;
if (heap[leftChildIndex] == null) {
return;
}
if (heap[rightChildIndex] == null) {
childIndex = leftChildIndex;
} else if (heap[rightChildIndex].compareTo(heap[leftChildIndex]) == -1) {
childIndex = rightChildIndex;
} else {
childIndex = leftChildIndex;
}
}
}
public void swap(int index1, int index2) {
Vertex temp = heap[index1];
heap[index1] = heap[index2];
heap[index2] = temp;
}
public boolean isEmpty() {
return size == 0;
}
}
}
}
minheap을 maxheap으로 변경하고 가장 길거나 최대 경로를 출력으로 기대할 수는 없습니다. http://stackoverflow.com/questions/8027180/dijkstra-for-longest-path-in-a-dag 및 http://stackoverflow.com/questions/10462736/graph-dijkstra-for-the-single-source- 최장 경로 – user238607