난 당신이 비율을 직접 변환 할 필요가 믿는 :
d = {('Default', 'MORTGAGE'): 498, ('Default', 'OWN'): 110, ('Default', 'RENT'): 611, ('Fully Paid', 'MORTGAGE'): 3100, ('Fully Paid', 'NONE'): 1, ('Fully Paid', 'OTHER'): 5, ('Fully Paid', 'OWN'): 558, ('Fully Paid', 'RENT'): 2568, ('Late (16-30 days)', 'MORTGAGE'): 1101, ('Late (16-30 days)', 'OWN'): 260, ('Late (16-30 days)', 'RENT'): 996, ('Late (31-120 days)', 'MORTGAGE'): 994, ('Late (31-120 days)', 'OWN'): 243, ('Late (31-120 days)', 'RENT'): 1081}
sub_df1 = pd.DataFrame(d.values(), columns=['count'], index=pd.MultiIndex.from_tuples(d.keys()))
sub_df2 = sub_df1.unstack()
sub_df2.columns = sub_df2.columns.droplevel() # Drop `count` label.
sub_df2 = sub_df2.div(sub_df2.sum())
sub_df2.T.plot(kind='bar', stacked=True, rot=1, figsize=(8, 8),
title="Home ownership across Loan Types")
sub_df3 = sub_df1.unstack().T
sub_df3.index = sub_df3.index.droplevel() # Drop `count` label.
sub_df3 = sub_df3.div(sub_df3.sum())
sub_df3.T.plot(kind='bar', stacked=True, rot=1, figsize=(8, 8),
title="Home ownership across Loan Types")
텍스트가 아닌 그림으로 질문에 GROUPBY 데이터를 추가; 응답이 더 쉽고 가능성이 높습니다. – cco