1과 0의 목록을 가져 와서 GF (2) 유한 필드 산술 연산을 수행하는 클래스가 있습니다. 그것은 다항식 형식으로 입력을 만들려고 할 때까지 일하는 것이 었습니다. 정규식 문제를 해결 한 후에 유한 산술 연산을 수행하는 방법에 관해서는 연산자에 과부하가 발생할 것으로 생각했습니다.Python - 클래스 인스턴스에서 정규식 사용
parsePolyToListInput(input)
의 실제 코드는 수업 외에서 작동합니다. 문제는 정규식에있는 것 같아요.이 문자열은 문자열에서만 가져올 것이고 (이것은 의미가 있습니다) 매개 변수로 self.expr을 사용하여 초기화하지 않는 것 같습니다 (이것이 문제입니다). 초기화 직전의 @staticmethod는 다항식이 전달 될 때 언 바운드 오류를 복구하기위한 시도 였지만 분명히 완전히 잘못되었습니다. 어떤 산술 연산을 살펴보기로 결정했다면 모듈러 역함은 작동하지 않습니다 (함수의 나눗셈과 리턴 타입이 반복되는 동안 반복되는 형식화 문제로 인한 것 같습니다) :
import re
class gf2poly:
#binary arithemtic on polynomials
#@staticmethod
def __init__(self,expr):
self.expr = expr
#self.expr = [int(i) for i in expr]
self.expr = gf2poly.parsePolyToListInput(self.expr)
def convert(self): #to clarify the input if necessary
convertToString = str(self.expr)
print "expression is %s"%(convertToString)
def id(self): #returns modulus 2 (1,0,0,1,1,....) for input lists
return [int(self.expr[i])%2 for i in range(len(self.expr))]
def listToInt(self): #converts list to integer for later use
result = gf2poly.id(self)
return int(''.join(map(str,result)))
def prepBinary(a,b): #converts to base 2 and orders min and max for use
a = gf2poly.listToInt(a); b = gf2poly.listToInt(b)
bina = int(str(a),2); binb = int(str(b),2)
a = min(bina,binb); b = max(bina,binb);
return a,b
@staticmethod
def outFormat(raw):
raw = str(raw[::-1]); g = [] #reverse binary string for enumeration
[g.append(i) for i,c in enumerate(raw) if c == '1']
processed = "x**"+' + x**'.join(map(str, g[::-1]))
if len(g) == 0: return 0 #return 0 if list empty
return processed #returns result in gf(2) polynomial form
def parsePolyToListInput(poly):
c = [int(i.group(0)) for i in re.finditer(r'\d+', poly)] #re.finditer returns an iterator
#m = max(c)
return [1 if x in c else 0 for x in xrange(max(c), -1, -1)]
#return d
def add(self,other): #accepts 2 lists as parameters
a = gf2poly.listToInt(self); b = gf2poly.listToInt(other)
bina = int(str(a),2); binb = int(str(b),2)
m = bina^binb; z = "{0:b}".format(m)
return z #returns binary string
def subtract(self,other): #basically same as add() but built differently
result = [self.expr[i]^other.expr[i] for i in range(len(max(self.expr,other.expr)))]
return int(''.join(map(str,result)))
def multiply(a,b): #a,b are lists like (1,0,1,0,0,1,....)
a,b = gf2poly.prepBinary(a,b)
g = []; bitsa = "{0:b}".format(a)
[g.append((b<<i)*int(bit)) for i,bit in enumerate(bitsa)]
m = reduce(lambda x,y: x^y,g); z = "{0:b}".format(m)
return z #returns product of 2 polynomials in gf2
def divide(a,b): #a,b are lists like (1,0,1,0,0,1,....)
a,b = gf2poly.prepBinary(a,b)
bitsa = "{0:b}".format(a); bitsb = "{0:b}".format(b)
difflen = len(str(bitsb)) - len(str(bitsa))
c = a<<difflen; q=0
while difflen >= 0 and b != 0: #a is divisor, b is dividend, b/a
q+=1<<difflen; b = b^c # b/a because of sorting in prep
lendif = abs(len(str(bin(b))) - len(str(bin(c))))
c = c>>lendif; difflen -= lendif
r = "{0:b}".format(b); q = "{0:b}".format(q)
return r,q #returns r remainder and q quotient in gf2 division
def remainder(a,b): #separate function for clarity when calling
r = gf2poly.divide(a,b)[0]; r = int(str(r),2)
return "{0:b}".format(r)
def quotient(a,b): #separate function for clarity when calling
q = gf2poly.divide(a,b)[1]; q = int(str(q),2)
return "{0:b}".format(q)
def extendedEuclideanGF2(a,b): # extended euclidean. a,b are GF(2) polynomials in list form
inita,initb=a,b; x,prevx=0,1; y,prevy = 1,0
while sum(b) != 0:
q = gf2poly.quotient(a,b);
q = list(q); q = [int(x) for x in q]
#q = list(q);
#q = tuple([int(i) for i in q])
q = gf2poly(q)
a,b = b,gf2poly.remainder(a,b);
#a = map(list, a);
#b = [list(x) for x in a];
#a = [int(x) for x in a]; b = [int(x) for x in b];
b = list(b); b = [int(x) for x in b]
#b = list(b);
#b = tuple([int(i) for i in b])
b = gf2poly(b)
#x,prevx = (prevx-q*x, x);
#y,prevy=(prevy-q*y, y)
print "types ",type(q),type(a),type(b)
#q=a//b; a,b = b,a%b; x,prevx = (prevx-q*x, x); y,prevy=(prevy-q*y, y)
#print("%d * %d + %d * %d = %d" % (inita,prevx,initb,prevy,a))
return a,prevx,prevy # returns gcd of (a,b), and factors s and t
def modular_inverse(a,mod): # where a,mod are GF(2) polynomials in list form
gcd,s,t = gf2poly.extendedEuclideanGF2(a,mod); mi = gf2poly.remainder(s,mod)
#gcd,s,t = ext_euc_alg_i(a,mod); mi = s%mod
if gcd !=1: return False
#print ("%d * %d mod %d = 1"%(a,mi,mod))
return mi # returns modular inverse of a,mod
나는 보통이 입력으로 테스트 : 당신이 내 코드에 대해 알 수 있습니다
a = x**14 + x**1 + x**0
p1 = gf2poly(a)
b = x**6 + x**2 + x**1
p2 = gf2poly(b)
첫 번째 것은 매우 좋지 않다라는 것이다. 여기에는 두 가지 이유가 있습니다.
1) 제 1 버전이 유한 필드 GF (2)에서 작업을 수행하고 다항식 형식으로 출력 할 수 있도록 썼습니다. 다음 버전은 다항식 입력을 받아 들일 수 있어야하고 계획대로 작동하지 않는 중요한 '모듈 역 (modular inverse)'기능을 수행해야합니다 (실제로는 전혀 작동하지 않습니다).
2) 나는 파이썬을 가르치고있다. (사실 나는 전반적으로 프로그래밍을 가르치고있다.) 그래서 나는 초보자 습관을 가능한 한 빨리 깨기 위해 프로 파이썬 프로그래머의 건설적인 비판을 환영한다.
편집 :
어쩌면 내가 무엇을 작동하고 무엇을 명확히 도움이 될 것으로 테스트했던 코드를 좀 더하지 않는 : 문제의
t1 = [1,1,1]; t2 = [1,0,1]; t3 = [1,1]; t4 = [1, 0, 1, 1, 1, 1, 1]
t5 = [1,1,1,1]; t6 = [1,1,0,1]; t7 = [1,0,1,1,0]
f1 = gf2poly(t1); f2 = gf2poly(t2); f3 = gf2poly(t3); f4 = gf2poly(t4)
f5 = gf2poly(t5);f6 = gf2poly(t6);f7 = gf2poly(t7)
##print "subtract: ",a.subtract(b)
##print "add: ",a.add(b)
##print "multiply: ",gf2poly.multiply(f1,f3)
##print "multiply: ",gf2poly.multiply(f1,f2)
##print "multiply: ",gf2poly.multiply(f3,f4)
##print "degree a: ",a.degree()
##print "degree c: ",c.degree()
##print "divide: ",gf2poly.divide(f1,b)
##print "divide: ",gf2poly.divide(f4,a)
##print "divide: ",gf2poly.divide(f4,f2)
##print "divide: ",gf2poly.divide(f2,a)
##print "***********************************"
##print "quotient: ",gf2poly.quotient(f2,f5)
##print "remainder: ",gf2poly.remainder(f2,f5)
##testq = gf2poly.quotient(f4,f2)
##testr = gf2poly.remainder(f4,f2)
##print "quotient: ",testq,type(testq)
##print "remainder: ",testr,type(testr)
##print "***********************************"
##print "outFormat testp: ",gf2poly.outFormat(testq)
##print "outFormat testr: ",gf2poly.outFormat(testr)
##print "***********************************"
#print "gf2poly.modular_inverse(): ",gf2poly.modular_inverse(f2,f3)
print "p1 ",p1 #,type(f2),type(f3)
#print "parsePolyToListInput ",gf2poly.parsePolyToListInput(a)