비교적 드문 드문 EEG 데이터 (27 전극)의 헤드 뷰 열지도를 만들려고합니다. 나는 EEG 전극의 x, y 직교 좌표를 극좌표로 변환하고, 그와 같이 그들을 매핑하려고 시도한다. 각 x, y 좌표는 해당 위치 주변의 색상을 일치시키려는 주어진 값 (알고 싶은 경우 : 허스트 지수)에 해당합니다.griddata : QH6214 qhull 입력 오류 : 초기 심플 렉스를 구성하기에 포인트가 충분하지 않습니다. (2)
나는 this page에서 작업 코드로 시작하여 내 문제에 적응하려고했습니다. 불행하게도, 나의 적응은 효과가 없다.
Traceback (most recent call last):
File "/Users/mac/NIH/EEG/Python/Testing heat map", line 50, in <module>
data = griddata(points, values, (grid_r, grid_theta),fill_value=0)
File "/Users/mac/anaconda/lib/python2.7/site-packages/scipy/interpolate/ndgriddata.py", line 217, in griddata rescale=rescale)
File "scipy/interpolate/interpnd.pyx", line 246, in scipy.interpolate.interpnd.LinearNDInterpolator.__init__
(scipy/interpolate/interpnd.c:4980)
File "scipy/spatial/qhull.pyx", line 1747, in scipy.spatial.qhull.Delaunay.__init__
(scipy/spatial/qhull.c:15918)
File "scipy/spatial/qhull.pyx", line 415, in scipy.spatial.qhull._Qhull.__init__
(scipy/spatial/qhull.c:5108) scipy.spatial.qhull.**QhullError: QH6214 qhull input error: not enough points(2) to construct initial simplex (need 33)**
While executing: | qhull d Qbb Qt Q12 Qx Qz Qc Options selected for
Qhull 2015.2.r 2016/01/18: run-id 1980533833 delaunay Qbbound-last
Qtriangulate Q12-no-wide-dup Qxact-merge Qz-infinity-point
Qcoplanar-keep _zero-centrum Qinterior-keep
Q3-no-merge-vertices-dim-high
굵게 표시된 부분은 내가 이해하려고 노력하고있는 무슨이다 : 나는 오류가
from __future__ import division, print_function, absolute_import
from pylab import *
import numpy as np
from scipy.interpolate import griddata
# Setting the paremeters that define the circle
max_r = 1
max_theta = 2.0 * np.pi
###Cartesian coordinates of the 27 electrodes
###x axis goes from back of head to nose, with nose being the positive direction
###y axis goes from ear to ear, with toward right ear (from perspective of self) being the negative direction
# X coordinates
X = [0.95, 0.95, 0.673, 0.673, 0.000000000000000044, 0.000000000000000044,
-0.673, -0.673, -0.95, -0.95, 0.587, 0.587, 0.0000000000000000612, 0.0000000000000000612,
-0.587, -0.587, 0.719, 0.00000000000000000000000000000000375, -0.719,
0.375, 0.375, 0.999, -0.999, -0.375, -0.375, -0.9139, -0.9139,.5,.6,.7,.8]
# Y coordinates
Y = [0.309, -0.309, 0.545, -0.545, 0.719, -0.719, 0.545, -0.545,
0.309, -0.309, 0.809, -0.809, 0.999, -0.999, 0.809, -0.809, 0, -0.0000000000000000612,
-0.0000000000000000881, 0.375, -0.375, 0, -0.000000000000000122, 0.375, -0.375, 0.2063, -0.2063,.5,.6,.7,.8]
# Convert cartesian coordinates to polar
def convert_to_polar(x, y):
theta = np.arctan2(y, x)
r = np.sqrt(x ** 2 + y ** 2)
return theta, r
# Arrays that house the theta and radii from converted cartesian coordinates.
Thetas = []
Rs = []
# Converting cartesian coordinates to polar, for each electrode
for i in range(0, 31):
theta, r = convert_to_polar(X[i], Y[i])
Thetas.append(theta)
Rs.append(r)
# Making a two column list that contains the converted thetas and radii, so the appropriate shape is attained.
points = [Thetas,Rs]
values = [[.51,.71,.81,.91,.72,.87,.90,.67,.78,.89,.56,.45,.68,.96,.69,.63,.37,.85,.92,.70,.74,.97,.35,.76,.68,.46,.68,90,91,92,93],
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,30,78,56,90]]
# now we create a grid of values, interpolated from our random sample above
theta = np.linspace(0.0, max_theta, 100)
r = np.linspace(0, max_r, 200)
grid_r, grid_theta = np.meshgrid(r, theta)
data = griddata(points, values, (grid_r, grid_theta),fill_value=0)
# Create a polar projection
ax1 = plt.subplot(projection="polar")
ax1.pcolormesh(theta, r, data.T)
plt.show()
:
여기 내 코드입니다. 포인트를 더 추가하면 (즉, 극좌표가되는 목록 X와 Y에 더 많은 포인트를 추가 할 때), 오류가 주장해야하는 포인트 수가 계속 증가합니다. 입력 한 포인트 수보다 항상 두 단계 앞당겨집니다.
아무도이 문제를 어떻게 처리 할 생각이 있습니까?
감사 예컨대을
numpy.column_stack
를 사용하여 만들 수 있습니다! – philosonista