저는 NDsolve를 사용하여 ginzburg landau와 관련된 다음의 비선형 결합 된 PDE 방정식을 풀려고합니다. Mathematica를 처음 사용합니다. 다음과 같은 오류가 발생합니다. 내가 뭘하고있는 실수는 무엇입니까? 당신이 bc
의 값을 보면Mathematica에서의 비선형 PDE 해석
pde = {D[u[t, x, y], t] ==
D[u[t, x, y], {x, x}] +
D[u[t, x, y], {y,
y}] - (1/u[t, x, y])^3*(D[v[t, x, y], y]^2 +
D[v[t, x, y], x]^2) - u[t, x, y] + u[t, x, y]^3,
D[v[t, x, y], t] ==
D[v[t, x, y], {x, x}] + D[v[t, x, y], {y, y}] -
v[t, x, y]*u[t, x, y] +
(2/u[t, x, y])*(D[u[t, x, y], x]*D[v[t, x, y], x] -
D[u[t, x, y], y]*D[v[t, x, y], y])};bc = {u[0, x, y] == 0, v[0, x, y]== 0, u[t, 5, y] == 1, u[t, x, 5] == 1, D[v[t, 0, y], x] == 0, D[v[t, x, 0], y] == 0};
NDSolve[{pde, bc}, {u, v}, {x, 0, 5}, {y, 0, 5}, {t, 0, 2}]
'Error: NDSolve::deqn: Equation or list of equations expected instead of True in the first argument {{(u^(1,0,0))[t,x,y]==-u[t,x,y]+u[t,x,y]^3+(u^(0,0,y))[t,x,y]-((<<1>>^(<<3>>))[<<3>>]^2+(<<1>>^(<<3>>))[<<3>>]^2)/u[t,x,y]^3+(u^(0,x,0))[t,x,y],(v^(1,0,0))[t,x,y]==-u[t,x,y] v[t,x,y]+(v^(0,0,y))[t,x,y]+(2 (-(<<1>>^(<<3>>))[<<3>>] (<<1>>^(<<3>>))[<<3>>]+(<<1>>^(<<3>>))[<<3>>] (<<1>>^(<<3>>))[<<3>>]))/u[t,x,y]+(v^(0,x,0))[t,x,y]},{u[0,x,y]==0,v[0,x,y]==0,u[t,5,y]==1,u[t,x,5]==1,True,True}}.
NDSolve[{{Derivative[1, 0, 0][u][t, x, y] == -u[t, x, y] +
u[t, x, y]^3 + Derivative[0, 0, y][u][t, x, y] -
(Derivative[0, 0, 1][v][t, x, y]^2 +
Derivative[0, 1, 0][v][t, x, y]^2)/u[t, x, y]^3 +
Derivative[0, x, 0][u][t, x, y],
Derivative[1, 0, 0][v][t, x, y] == (-u[t, x, y])*v[t, x, y] +
Derivative[0, 0, y][v][t, x, y] +
(2*((-Derivative[0, 0, 1][u][t, x, y])*
Derivative[0, 0, 1][v][t, x, y] +
Derivative[0, 1, 0][u][t, x, y]*
Derivative[0, 1, 0][v][t, x, y]))/u[t, x, y] +
Derivative[0, x, 0][v][t, x, y]}, {u[0, x, y] == 0,
v[0, x, y] == 0, u[t, 5, y] == 1, u[t, x, 5] == 1, True,
True}}, {u, v}, {x, 0, 5}, {y, 0, 5}, {t, 0, 2}]
고맙습니다. – Man