처음의 두 레이어를 동결시키고 트레이닝 속도를 낮추고 전체 시작을 미세 조정하는 꽤 일반적인 사용 사례가 있습니다. 모델. 여기 다른 트레이닝 가능 변수로 Inception-3 체크 포인트에서 트레이스를 복원하는 방법
는 두 번째 부분을 두 번째 부분에서, 나는 통과하지 않는train_dir='/home/ubuntu/pynb/TF play/log-inceptionv3flowers'
with tf.Graph().as_default():
tf.logging.set_verbosity(tf.logging.INFO)
dataset = get_dataset()
images, _, labels = load_batch(dataset, batch_size=32)
# Create the model, use the default arg scope to configure the batch norm parameters.
with slim.arg_scope(inception.inception_v3_arg_scope()):
logits, _ = inception.inception_v3(images, num_classes=5, is_training=True)
# Specify the loss function:
one_hot_labels = slim.one_hot_encoding(labels, 5)
tf.losses.softmax_cross_entropy(one_hot_labels, logits)
total_loss = tf.losses.get_total_loss()
# Create some summaries to visualize the training process:
tf.summary.scalar('losses/Total Loss', total_loss)
# Specify the optimizer and create the train op:
optimizer = tf.train.RMSPropOptimizer(0.0001, 0.9,
momentum=0.9, epsilon=1.0)
train_op = slim.learning.create_train_op(total_loss, optimizer)
# Run the training:
final_loss = slim.learning.train(
train_op,
logdir=train_dir,
init_fn=get_init_fn(),
number_of_steps=10000,
save_summaries_secs=30,
save_interval_secs=30,
session_config=tf.ConfigProto(gpu_options=gpu_options))
print('Finished training. Last batch loss %f' % final_loss)
공지 사항을 실행하기위한, 제대로 다음 내 코드를 실행하는 첫 번째 부분
train_dir='/home/ubuntu/pynb/TF play/log-inceptionv3flowers'
with tf.Graph().as_default():
tf.logging.set_verbosity(tf.logging.INFO)
dataset = get_dataset()
images, _, labels = load_batch(dataset, batch_size=32)
# Create the model, use the default arg scope to configure the batch norm parameters.
with slim.arg_scope(inception.inception_v3_arg_scope()):
logits, _ = inception.inception_v3(images, num_classes=5, is_training=True)
# Specify the loss function:
one_hot_labels = slim.one_hot_encoding(labels, 5)
tf.losses.softmax_cross_entropy(one_hot_labels, logits)
total_loss = tf.losses.get_total_loss()
# Create some summaries to visualize the training process:
tf.summary.scalar('losses/Total Loss', total_loss)
# Specify the optimizer and create the train op:
optimizer = tf.train.RMSPropOptimizer(0.001, 0.9,
momentum=0.9, epsilon=1.0)
train_op = slim.learning.create_train_op(total_loss, optimizer, variables_to_train=get_variables_to_train())
# Run the training:
final_loss = slim.learning.train(
train_op,
logdir=train_dir,
init_fn=get_init_fn(),
number_of_steps=4500,
save_summaries_secs=30,
save_interval_secs=30,
session_config=tf.ConfigProto(gpu_options=gpu_options))
print('Finished training. Last batch loss %f' % final_loss)
를 실행하기위한 내 코드입니다 아무것도 create_train_op
의 variables_to_train
매개 변수로. 나는 이전 체크 포인트에서 해당 레이어를 훈련하지 않았기 때문에이 오류는 다음
NotFoundError (see above for traceback): Key InceptionV3/Conv2d_4a_3x3/BatchNorm/beta/RMSProp not found in checkpoint
[[Node: save_1/RestoreV2_49 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save_1/Const_0, save_1/RestoreV2_49/tensor_names, save_1/RestoreV2_49/shape_and_slices)]]
[[Node: save_1/Assign_774/_1550 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/gpu:0", send_device="/job:localhost/replica:0/task:0/cpu:0", send_device_incarnation=1, tensor_name="edge_2911_save_1/Assign_774", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/gpu:0"]()]]
나는 그것이 존재입니다 InceptionV3/Conv2d_4a_3x3 층에 대한 RMSProp 변수에 대한 찾고 있다고 의심
을 표시됩니다. 어떻게해야하는지에 대한 문서에서 예제를 볼 수 없기 때문에 원하는 것을 달성하는 방법을 잘 모르겠습니다.