예, 가능합니다. 아래 코드는 내장 된 Exp
이므로 테스트 해보십시오. 유일한 라이브러리 사용은 테스트에만 국한되므로 C 로의 변환은 매우 직관적이어야합니다. 메인 함수 에지 검사 값과 상기 코드
package main
import (
"fmt"
"math"
"math/big"
"math/rand"
)
// AddMod returns a + b (mod m).
func AddMod(a, b, m uint64) uint64 {
a %= m
b %= m
if a >= m-b {
return a - (m - b)
}
return a + b
}
// SubMod returns a - b (mod m).
func SubMod(a, b, m uint64) uint64 {
a %= m
b %= m
if a < b {
return a + (m - b)
}
return a - b
}
// Lshift32Mod returns 2^32 a (mod m).
func Lshift32Mod(a, m uint64) uint64 {
a %= m
// Let A = 2^32 a. The desired result is A - q* m, where q* = [A/m].
// Approximate q* from below by q = [A/(m+err)] for the err in (0, 2^32] such
// that 2^32|m+err. The discrepancy is
//
// q* - q < A (1/m - 1/(m+err)) + 1 = A err/(m (m+err)) + 1
//
// A - q m = A - q* m + (q* - q) m < m + A err/(m+err) + m < 2 m + 2^64.
//
// We conclude that a handful of loop iterations suffice.
m0 := m & math.MaxUint32
m1 := m >> 32
q := a/(m1 + 1)
q0 := q & math.MaxUint32
q1 := q >> 32
p := q0 * m0
p0 := p & math.MaxUint32
p1 := p >> 32
a -= p1 + q0*m1 + q1*m0 + ((q1 * m1) << 32)
for a > math.MaxUint32 {
p0 += m0
a -= m1
}
return SubMod(a<<32, p0, m)
}
// MulMod returns a b (mod m).
func MulMod(a, b, m uint64) uint64 {
a0 := a & math.MaxUint32
a1 := a >> 32
b0 := b & math.MaxUint32
b1 := b >> 32
p0 := a0 * b0
p1 := AddMod(a0*b1, a1*b0, m)
p2 := a1 * b1
return AddMod(p0, Lshift32Mod(AddMod(p1, Lshift32Mod(p2, m), m), m), m)
}
// PowMod returns a^b (mod m), where 0^0 = 1.
func PowMod(a, b, m uint64) uint64 {
r := 1 % m
for b != 0 {
if (b & 1) != 0 {
r = MulMod(r, a, m)
}
a = MulMod(a, a, m)
b >>= 1
}
return r
}
func randUint64() uint64 {
return uint64(rand.Uint32()) | (uint64(rand.Uint32()) << 32)
}
func main() {
var biga, bigb, bigm, actual, bigmul, expected big.Int
for i := 1; true; i++ {
a := randUint64()
b := randUint64()
m := randUint64()
biga.SetUint64(a)
bigb.SetUint64(b)
bigm.SetUint64(m)
actual.SetUint64(MulMod(a, b, m))
bigmul.Mul(&biga, &bigb)
expected.Mod(&bigmul, &bigm)
if actual.Cmp(&expected) != 0 {
panic(fmt.Sprintf("MulMod(%d, %d, %d): expected %s; got %s", a, b, m, expected.String(), actual.String()))
}
if i%10 == 0 {
actual.SetUint64(PowMod(a, b, m))
expected.Exp(&biga, &bigb, &bigm)
if actual.Cmp(&expected) != 0 {
panic(fmt.Sprintf("PowMod(%d, %d, %d): expected %s; got %s", a, b, m, expected.String(), actual.String()))
}
}
if i%100000 == 0 {
println(i)
}
}
}
C 번역 :
#include <stdio.h>
// AddMod returns a + b (mod m).
unsigned long long AddMod(unsigned long long a, unsigned long long b, unsigned long long m){
a %= m;
b %= m;
if (a >= m-b) {
return a - (m - b);
}
return a + b;
}
// SubMod returns a - b (mod m).
unsigned long long SubMod(unsigned long long a, unsigned long long b, unsigned long long m){
a %= m;
b %= m;
if (a < b) {
return a + (m - b);
}
return a - b;
}
// Lshift32Mod returns 2^32 a (mod m).
unsigned long long Lshift32Mod(unsigned long long a, unsigned long long m){
a %= m;
// Let A = 2^32 a. The desired result is A - q* m, where q* = [A/m].
// Approximate q* from below by q = [A/(m+err)] for the err in (0, 2^32] such
// that 2^32|m+err. The discrepancy is
//
// q* - q < A (1/m - 1/(m+err)) + 1 = A err/(m (m+err)) + 1
//
// A - q m = A - q* m + (q* - q) m < m + A err/(m+err) + m < 2 m + 2^64.
//
// We conclude that a handful of loop iterations suffice.
unsigned long long m0 = m & 0xFFFFFFFF;
unsigned long long m1 = m >> 32;
unsigned long long q = a/(m1 + 1);
unsigned long long q0 = q & 0xFFFFFFFF;
unsigned long long q1 = q >> 32;
unsigned long long p = q0 * m0;
unsigned long long p0 = p & 0xFFFFFFFF;
unsigned long long p1 = p >> 32;
a -= p1 + q0*m1 + q1*m0 + ((q1 * m1) << 32);
while (a > 0xFFFFFFFF) {
p0 += m0;
a -= m1;
}
return SubMod(a<<32, p0, m);
}
// MulMod returns a b (mod m).
unsigned long long MulMod(unsigned long long a, unsigned long long b, unsigned long long m){
unsigned long long a0 = a & 0xFFFFFFFF;
unsigned long long a1 = a >> 32;
unsigned long long b0 = b & 0xFFFFFFFF;
unsigned long long b1 = b >> 32;
unsigned long long p0 = a0 * b0;
unsigned long long p1 = AddMod(a0*b1, a1*b0, m);
unsigned long long p2 = a1 * b1;
return AddMod(p0, Lshift32Mod(AddMod(p1, Lshift32Mod(p2, m), m), m), m);
}
// PowMod returns a^b (mod m), where 0^0 = 1.
unsigned long long PowMod(unsigned long long a, unsigned long long b, unsigned long long m){
unsigned long long r = 1 % m;
while (b != 0) {
if ((b & 1) != 0) {
r = MulMod(r, a, m);
}
a = MulMod(a, a, m);
b >>= 1;
}
return r;
}
int main(void){
unsigned long long a = 4294967189;
unsigned long long b = 4294967231;
unsigned long long m = 18446743979220271189;
unsigned long long c = 0;
c = PowMod(a, b, m);
printf("%llu %llu %llu %llu", a, b, m, c);
}
키워드 'powmod'와 SO 소식 수십개이다. 확실히 그 중 하나가 당신을 도울 것입니다. OTOH, 당신이 시도한 것을 게시하는 것이 좋을 것입니다. – chux
만약'n = 2^64 - 1'이라면, 코드가''double ''크기의''n''을 필요로한다고 생각하지 않습니다. "modularly exponentiated 될 숫자"만일'0
chux
@Nae 어디에 게시하든, 대답은 동일합니다 : x 비트의 n 비트에 대해 주어진 비트 레인에 대해 항상 2 * x 비트len 연산이 필요합니다. 'n에 대한'unsigned long long' 비트 레인을 감안할 때'unsigned long long long long' 정밀도 없이는 할 수 없습니다. –