Heres 당신이 찾고 있다고 생각하는 코드 예제. 저는 파티클 시스템을 위해 인스턴스 렌더링을 사용했고, 텍스처, 색상 및 움직임을 지원합니다. 안드로이드 OpenGL 및 Windows에서 모두 작동합니다. 이 코드는 실행하는 데 약간의 작업이 필요하지만 진행하기가 쉽습니다.
#include "ParticleSystem.h"
#include "Engine.h"
#include "Transform.h"
#include "Shader.h"
#include "Texture.h"
#include "Mesh.h"
#include "ShaderHandler.h"
ParticleSystem::ParticleSystem()
{
}
ParticleSystem::~ParticleSystem()
{
shader = nullptr;
texture = nullptr;
glDeleteVertexArrays(1, &vertexArrayObject);
}
void ParticleSystem::init(Engine * engine, float size, Texture * texture, float maxVelocity, bool gravity)
{
this->maxVelocity = maxVelocity;
this->gravity = gravity;
this->size = size;
vertex =
{
-size, -size, 0.0f,
-size, size, 0.0f,
size, size, 0.0f,
size, -size, 0.0f
};
indices =
{
1, 0, 2, 3
};
this->shader = engine->getShaderHandler()->loadShader("res/shaders/texturedInstancedShader");
this->texture = texture;
glGenVertexArrays(1, &this->vertexArrayObject);
glBindVertexArray(this->vertexArrayObject);
glGenBuffers(ParticleSystem::NUM_BUFFERS, this->vertexArrayBuffer);
glBindBuffer(GL_ARRAY_BUFFER, this->vertexArrayBuffer[this->VERTEX_VB]);
glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat) * this->vertex.size(), &this->vertex[0], GL_STATIC_DRAW); //send model to GPU
glBindBuffer(GL_ARRAY_BUFFER, this->vertexArrayBuffer[this->TEXTURE_VB]);
glBufferData(GL_ARRAY_BUFFER, sizeof(glm::vec2) * this->texCoords.size(), &this->texCoords[0], GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->vertexArrayBuffer[this->INDEX_VB]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(unsigned int) * indices.size(), &this->indices[0], GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, this->vertexArrayBuffer[this->POSITION_VB]);
glBufferData(GL_ARRAY_BUFFER, sizeof(glm::vec3) * this->positions.size(), NULL, GL_STREAM_DRAW); //NULL (empty) buffer
glBindBuffer(GL_ARRAY_BUFFER, this->vertexArrayBuffer[this->COLOR_VB]);
glBufferData(GL_ARRAY_BUFFER, sizeof(glm::vec4) * this->colors.size(), NULL, GL_STREAM_DRAW); //NULL (empty) buffer
glBindVertexArray(0);
}
void ParticleSystem::createPoint(float pps, float deltaTime, glm::vec3 position, float maxLife, glm::vec4 color, glm::vec3 velocity)
{
Particle particle;
float amountPerSecond = pps * deltaTime;
for (float i = 0; i < amountPerSecond; i++)
{
particle.life = (rand() % static_cast<int>(maxLife * 100))/100.f;
particle.velocity =
{
((rand() % 200/100.f) - 1.f) * velocity.x,
((rand() % 200/100.f) - 1.f) * velocity.y,
((rand() % 200/100.f) - 1.f) * velocity.z
};
particles.emplace_back(particle);
positions.emplace_back(position);
colors.emplace_back(color);
}
}
void ParticleSystem::draw(glm::mat4 view)
{
if (particles.size() > 0)
{
Transform transform;
this->shader->bind();
this->shader->loadTransform(transform, view);
this->shader->loadInt(U_TEXTURE0, 0);
this->texture->bind(0);
glBindVertexArray(vertexArrayObject);
glVertexAttribDivisor(0, 0);
glVertexAttribDivisor(1, 1);
glVertexAttribDivisor(2, 1);
glVertexAttribDivisor(3, 0);
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, this->vertexArrayBuffer[this->VERTEX_VB]);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, (void*)0);
glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, this->vertexArrayBuffer[this->POSITION_VB]);
glBufferData(GL_ARRAY_BUFFER, sizeof(glm::vec3) * positions.size(), &positions[0], GL_STREAM_DRAW);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, (void*)0);
glEnableVertexAttribArray(2);
glBindBuffer(GL_ARRAY_BUFFER, this->vertexArrayBuffer[this->COLOR_VB]);
glBufferData(GL_ARRAY_BUFFER, sizeof(glm::vec4) * colors.size(), &colors[0], GL_STREAM_DRAW);
glVertexAttribPointer(2, 4, GL_FLOAT, GL_FALSE, 0, (void*)0);
glEnableVertexAttribArray(3);
glBindBuffer(GL_ARRAY_BUFFER, this->vertexArrayBuffer[this->TEXTURE_VB]);
glVertexAttribPointer(3, 2, GL_FLOAT, GL_FALSE, 0, (void*)0);
glDrawElementsInstanced(GL_TRIANGLE_STRIP, indices.size(), GL_UNSIGNED_INT, 0, positions.size());
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
glDisableVertexAttribArray(2);
glBindVertexArray(0);
}
}
void ParticleSystem::update(float deltaTime)
{
for (std::size_t i = 0; i < particles.size(); i++)
{
particles[i].life -= (1.f * deltaTime); //decrease life with 1 per second
if (particles[i].life <= 0.f) //dead
{
particles.erase(particles.begin() + i);
colors.erase(colors.begin() + i);
positions.erase(positions.begin() + i);
continue;
}
if (this->gravity == true)
{
if (particles[i].velocity.y > -maxVelocity)
{
particles[i].velocity.y -= maxVelocity * deltaTime; //1 second to reach maximum velocity
}
else
{
particles[i].velocity.y = -maxVelocity;
}
}
positions[i] += (particles[i].velocity * deltaTime);
}
}
을 Heres 쉐이더 :
버텍스 쉐이더 :
#version 330 core
layout(location = 0) in vec3 vertex;
layout(location = 1) in vec3 positions;
layout(location = 2) in vec4 colors;
layout(location = 3) in vec2 texCoords;
out vec2 texCoord;
out vec4 color;
uniform mat4 transform;
void main()
{
color = colors;
texCoord = texCoords;
gl_Position = transform * vec4(vertex + positions, 1.0);
}
조각 쉐이더 :
#version 330 core
in vec4 color;
in vec2 texCoord;
out vec4 colors;
uniform sampler2D texture0;
void main()
{
vec4 texel = texture2D(texture0, texCoord);
if (texel.a <= 0.5)
{
discard;
}
colors = color * texel;
}
"* 나는 계속이 개체에 대한 OpenGL은 3 인스턴스화 된 렌더링을 구현하려면 어떻게 변화하는 정점? * "나는 당신이 그것을 의미한다는 것을 정말로 모른다. 그리고 헤더 파일을 보여주는 것은 정확히 밝히지 않습니다. –
인스턴스 렌더링을 설명하기 위해 편집되었습니다. 헤더 파일에 관해서, 나는 다양한 프레임 데이터와 함께 매 프레임마다 수백 배의 그림을 그려야한다는 것을 보여주고 싶었습니다. 위치는 매 프레임마다 변하고 속도는 각 물체마다 다를 수 있습니다. –
인스턴스 렌더링이 무엇인지 알고 있습니다. 제가 이해하지 못하는 것은 "끊임없이 변하는 정점"에 관한 부분입니다. 한 인스턴스의 정점 데이터를 변경하면 * all *에 대한 정점 데이터가 변경됩니다. 인스 턴싱은 동일한 정점 데이터를 사용하여 인스턴스별로 다른 데이터를 가진 여러 객체를 렌더링합니다 (일반적으로 인스턴스의 위치를 정의하는 데 사용되지만 색상과 같은 다른 요소에도 영향을 미칠 수 있습니다). 당신이 성취하고자하는 바를 묘사 해주십시오. –