매우 큰 배열에서이 코드를 사용하고 싶습니다. 이 코드는 실행하는 데 오랜 시간이 걸리며 효율적이지 않습니다. 루프를 제거하고이 코드를 최적의 방법으로 변환 할 수있는 방법이 있습니까?numpy 최적화 방법 (루프 제거)
>>> import numpy as np
>>> x=np.random.randint(10, size=(4,5,3))
>>> x
array([[[3, 2, 6],
[4, 6, 6],
[3, 7, 9],
[6, 4, 2],
[9, 0, 1]],
[[9, 0, 4],
[1, 8, 9],
[6, 8, 1],
[9, 4, 5],
[1, 5, 2]],
[[6, 1, 6],
[1, 8, 8],
[3, 8, 3],
[7, 1, 0],
[7, 7, 0]],
[[5, 6, 6],
[8, 3, 1],
[0, 5, 4],
[6, 1, 2],
[5, 6, 1]]])
>>> y=[]
>>> for i in range(x.shape[1]):
for j in range(x.shape[2]):
y.append(x[:, i, j].tolist())
>>> y
[[3, 9, 6, 5], [2, 0, 1, 6], [6, 4, 6, 6], [4, 1, 1, 8], [6, 8, 8, 3], [6, 9, 8, 1], [3, 6, 3, 0], [7, 8, 8, 5], [9, 1, 3, 4], [6, 9, 7, 6], [4, 4, 1, 1], [2, 5, 0, 2], [9, 1, 7, 5], [0, 5, 7, 6], [1, 2, 0, 1]]
어떤 복용량 변경 (-1 .. do? –
@pdshah https://stackoverflow.com/questions/41776579/what-does-1-in-numpy-reshape-mean – Divakar