SPI를 사용하여 GPIO 레지스터에 쓰면 MCP23S09에서 LED를 활성화하려고합니다.STM32 SPI가 예상대로 작동하지 않습니다.
보드에는 두 개의 칩이 있으며, 하나는 입력 용이고 다른 하나는 출력 용이므로 LED가 있습니다.
필자는 모든 것을 연결 했으므로 CH2를 로우로 설정하고 MOSI 및 SCK 핀을 내 마이크로 컨트롤러에 연결했다.
저는 CubeMX 소프트웨어와 함께 Nucleo STM32F411을 사용하고 있습니다. 따라서 레지스터를 사용하여 기능을 활성화하려고합니다.
하지만 유감스럽게도 IO 확장기에는 LED가 켜지지 않습니다.
내가 시도한 다음 것은 STM32duino이므로 내 보드에 Arduino 코드를 쓸 수 있습니다. 그러나 내가 아는 한, 이것은 HAL 라이브러리 위에있는 또 다른 계층 일뿐입니다.
놀랍게도 제대로 작동했습니다. 그것은 동일한 코드 조각입니다. Arduino에서 약간 변경되었습니다.
그러나 CubeMX에서 생성 된 HAL 라이브러리를 사용할 때 왜 작동하지 않는지 아직 이해할 수 없습니다.
아두 이노 코드 :
#include <SPI.h>
#define IODIR 0x00
#define IPOL 0x01
#define GPINTEN 0x02
#define DEFVAL 0x03
#define INTCON 0x04
#define IOCON 0x05
#define GPPU 0x06
#define INTF 0x07
#define INTCAP 0x08
#define GPIO 0x09
#define OLAT 0x0A
#define OPCODEW 0x40
#define OPCODER 0x41
// CS0 -> D2
const int slaveAPin = 2;
// CS1 -> D3
const int slaveBPin = 3;
// LED VAL
const uint8_t value = ~0x3F;
void setup() {
// put your setup code here, to run once:
// initialize SPI:
SPI.begin(); //Initialize the SPI_1 port.
SPI.setBitOrder(MSBFIRST); // Set the SPI_1 bit order
SPI.setDataMode(SPI_MODE0); //Set the SPI_1 data mode 0
SPI.setClockDivider(SPI_CLOCK_DIV64);
pinMode (slaveAPin, OUTPUT); // First chip for inputs
pinMode (slaveBPin, OUTPUT); // Second chip for outputs
digitalWrite (slaveAPin, HIGH);
digitalWrite (slaveBPin, HIGH);
}
void loop() {
// configuration led-io-expander
sendDataSPI(IOCON, 0x20);
// all pins = output
sendDataSPI(IODIR, 0x00);
// Enable LEDS
sendDataSPI(GPIO, value);
}
void sendDataSPI(uint8_t reg, uint8_t value){
digitalWrite (slaveBPin, LOW); // Take slave-select low
SPI.transfer(OPCODEW); // Send the MCP23S09 opcode, and write byte
SPI.transfer(reg); // Send the register we want to write
SPI.transfer(value); // Send the byte
digitalWrite (slaveBPin, HIGH); // Take slave-select high
}
STM32 HAL :
/**
******************************************************************************
* File Name : main.c
* Description : Main program body
******************************************************************************
** This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* COPYRIGHT(c) 2017 STMicroelectronics
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32f4xx_hal.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* USER CODE BEGIN Defines */
#define IODIR 0x00
#define IPOL 0x01
#define GPINTEN 0x02
#define DEFVAL 0x03
#define INTCON 0x04
#define IOCON 0x05
#define GPPU 0x06
#define INTF 0x07
#define INTCAP 0x08
#define GPIO 0x09
#define OLAT 0x0A
#define OPCODEW 0x40
#define OPCODER 0x41
#define SPI_TRANSFER_TIMEOUT 1000
/* USER CODE END Defines */
/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART2_UART_Init(void);
void sendDataSPI(uint8_t reg, uint8_t value);
int fgetc(FILE *f);
int fputc(int c, FILE *f);
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE END PFP */
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
int main(void)
{
// LED VAL
uint8_t value = 0x3F;
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration----------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_SPI1_Init();
MX_USART2_UART_Init();
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
// configuration led-io-expander
sendDataSPI(IOCON, 0x20);
// all pins = output
sendDataSPI(IODIR, 0x00);
// Enable LEDS
sendDataSPI(GPIO, value);
}
/* USER CODE END 3 */
}
// REGISTER, VALUE
void sendDataSPI(uint8_t reg, uint8_t value){
HAL_GPIO_WritePin(CS1_GPIO_Port, CS1_Pin, GPIO_PIN_RESET); // Take slave-select low
HAL_SPI_Transmit(&hspi1,(uint8_t *)OPCODEW,sizeof(uint8_t),SPI_TRANSFER_TIMEOUT); // Send the MCP23S09 opcode, and write bit
HAL_SPI_Transmit(&hspi1,(uint8_t *)®,sizeof(uint8_t),SPI_TRANSFER_TIMEOUT); // Send the register we want to write
HAL_SPI_Transmit(&hspi1,(uint8_t *)&value,sizeof(uint8_t),SPI_TRANSFER_TIMEOUT); // Send the byte
HAL_GPIO_WritePin(CS1_GPIO_Port, CS1_Pin, GPIO_PIN_SET); // Take slave-select high
}
int fputc(int c, FILE *f) {
return (HAL_UART_Transmit(&huart2, (uint8_t *)&c,1,HAL_MAX_DELAY));
}
int fgetc(FILE *f) {
char ch;
HAL_UART_Receive(&huart2,(uint8_t*)&ch,1,HAL_MAX_DELAY);
return (ch);
}
/** System Clock Configuration
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
/**Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = 16;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 16;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
/**Configure the Systick
*/
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
/* SPI1 init function */
static void MX_SPI1_Init(void)
{
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/* USART2 init function */
static void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/** Configure pins as
* Analog
* Input
* Output
* EVENT_OUT
* EXTI
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(CS0_GPIO_Port, CS0_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(CS1_GPIO_Port, CS1_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : B1_Pin */
GPIO_InitStruct.Pin = B1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : CS0_Pin */
GPIO_InitStruct.Pin = CS0_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(CS0_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : CS1_Pin */
GPIO_InitStruct.Pin = CS1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(CS1_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE END 4 */
도움을 주셔서 감사합니다. 실제로 잘못된 주소를 가리키는 OPCODEW가 원인이었습니다. 프로그램이 그 동안 잘 작동하는 것 같습니다 (HAL_SPI_GetState (& hspi1)! = HAL_SPI_STATE_READY); 그러나 나는 전송이 완료 될 때까지 기다리는 것이 정말로 중요하다고 본다. – stickfigure4
@ stickfigure4 듣기가 좋았습니다. 이 ('while (HAL_SPI_GetState (& hspi1)! = HAL_SPI_STATE_READY);)은 라이브러리의 초기 버그 였을 것입니다. –