Keras 콜백와 함께 최고의 val_loss : https://blog.keras.io/building-autoencoders-in-keras.html저장 여기에서 논의 된 내용에 근거하여 mnist 데이터 세트에 대한 잡음 제거의 autoencoder을 넣어
내가 어떻게 입력 이미지 변화의 재건을 통해 볼려고 해요 시각; DAE 스파이크 (훈련 및 검증 모두)가 손실되는 경우가 있음을 알고 있습니다 (예 : ~ 0.12 ~ 3.0의 손실). 훈련 과정에서 이러한 "실수"를 피하기 위해 Keras의 콜백을 사용하고 최상의 가중치 (val_loss wiss)를 저장하고 훈련의 각 "세그먼트"(내 경우에는 = 10 epoch) 이후에로드하려고합니다.
File "noise_e_mini.py", line 71, in <module> callbacks=([checkpointer])) File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 1650, in fit validation_steps=validation_steps) File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 1145, in _fit_loop callbacks.set_model(callback_model) File "/usr/local/lib/python2.7/dist-packages/keras/callbacks.py", line 48, in set_model callback.set_model(model) AttributeError: 'tuple' object has no attribute 'set_model'
내 코드는 다음과 같습니다 : 내가 잘못 뭐하는 거지
from keras.layers import Input, Dense
from keras.models import Model
from keras import regularizers
from keras.callbacks import ModelCheckpoint
input_img = Input(shape=(784,))
filepath_for_w='denoise_by_AE_weights_1.h5'
def autoencoder_block(input,l1_score_encode,l1_score_decode):
# encoder:
encoded = Dense(256, activation='relu',activity_regularizer=regularizers.l1(l1_score_encode))(input_img)
encoded = Dense(128, activation='relu',activity_regularizer=regularizers.l1(l1_score_encode))(encoded)
encoded = Dense(64, activation='relu',activity_regularizer=regularizers.l1(l1_score_encode))(encoded)
encoded = Dense(32, activation='relu',activity_regularizer=regularizers.l1(l1_score_encode))(encoded)
encoder = Model (input=input_img, output=encoded)
# decoder:
connection_layer= Input(shape=(32,))
decoded = Dense(64, activation='relu',activity_regularizer=regularizers.l1(l1_score_decode))(connection_layer)
decoded = Dense(128, activation='relu',activity_regularizer=regularizers.l1(l1_score_decode))(decoded)
decoded = Dense(256, activation='relu',activity_regularizer=regularizers.l1(l1_score_decode))(decoded)
decoded = Dense(784, activation='sigmoid',activity_regularizer=regularizers.l1(l1_score_decode))(decoded)
decoder = Model (input=connection_layer , output=decoded)
crunched = encoder(input_img)
final = decoder(crunched)
autoencoder = Model(input=input_img, output=final)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
return (autoencoder)
from keras.datasets import mnist
import numpy as np
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32')/255.
x_test = x_test.astype('float32')/255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
print x_train.shape
print x_test.shape
noise_factor = 0.5
x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape)
x_test_noisy = np.clip(x_test_noisy, 0., 1.)
autoencoder=autoencoder_block(input_img,0,0)
for i in range (10):
x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape)
x_train_noisy = np.clip(x_train_noisy, 0., 1.)
checkpointer=ModelCheckpoint(filepath_for_w, monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=True, mode='auto', period=1),
autoencoder.fit(x_train_noisy, x_train,
epochs=10,
batch_size=256,
shuffle=True,
validation_data=(x_test_noisy, x_test),
callbacks=([checkpointer]))
autoencoder.load_weights(filepath_for_w) # load weights from the best in the run
decoded_imgs = autoencoder.predict(x_test_noisy) # save results for this stage for presentation
np.save('decoded'+str(i)+'.npy',decoded_imgs) ####
np.save('tested.npy',x_test_noisy)
np.save ('true_catagories.npy',y_test)
np.save('original.npy',x_test)
autoencoder.save('denoise_by_AE_model_1.h5')
그러나, 나는 오류 메시지는 무엇입니까?
callbacks=([checkpointer]))
당신은 콜백 목록이 아니라 튜플을 필요로 괄호를 삭제해야이 줄 내 많은 감사합니다 :)