문제 : Levenberg Marquardt를 사용할 Jacobian 또는 Function 벡터의 정확한 크기를 항상 알 수는 없습니다. 따라서 컴파일 시간에 이들의 크기를 설정해야합니다.Eigen Levenberg Marquardt에서 사용하기 위해 Eigen DesnseFunctor 입력 및 값 크기를 설정하는 방법
예상 : MyFunctorDense 인스턴스를 선언 한 후. "InputsAtCompileTime"을 입력 크기로 설정하고 "ValuesAtCompileTime"을 값 크기로 설정할 수 있습니다. 그런 다음 내 코비, aFjac는 치수를 tValues의 X의 tInputs을해야하고, 내 기능 벡터, 아, 치수를해야 1.
.H 파일
#pragma once
#include "stdafx.h"
#include <iostream>
#include <unsupported/Eigen/LevenbergMarquardt>
#include <unsupported/Eigen/NumericalDiff>
//Generic functor
template <typename _Scalar, typename _Index>
struct MySparseFunctor
{
typedef _Scalar Scalar;
typedef _Index Index;
typedef Eigen::Matrix<Scalar,Eigen::Dynamic,1> InputType;
typedef Eigen::Matrix<Scalar,Eigen::Dynamic,1> ValueType;
typedef Eigen::SparseMatrix<Scalar, Eigen::ColMajor, Index>
JacobianType;
typedef Eigen::SparseQR<JacobianType, Eigen::COLAMDOrdering<int> >
QRSolver;
enum {
InputsAtCompileTime = Eigen::Dynamic,
ValuesAtCompileTime = Eigen::Dynamic
};
MySparseFunctor(int inputs, int values) : m_inputs(inputs),
m_values(values) {}
int inputs() const { return m_inputs; }
int values() const { return m_values; }
const int m_inputs, m_values;
};
template <typename _Scalar, int NX=Eigen::Dynamic, int NY=Eigen::Dynamic>
struct MyDenseFunctor
{
typedef _Scalar Scalar;
enum {
InputsAtCompileTime = NX,
ValuesAtCompileTime = NY
};
typedef Eigen::Matrix<Scalar,InputsAtCompileTime,1> InputType;
typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime>
JacobianType;
typedef Eigen::ColPivHouseholderQR<JacobianType> QRSolver;
const int m_inputs, m_values;
MyDenseFunctor() : m_inputs(InputsAtCompileTime),
m_values(ValuesAtCompileTime) {}
MyDenseFunctor(int inputs, int values) : m_inputs(inputs),
m_values(values) {}
int inputs() const { return m_inputs; }
int values() const { return m_values; }
};
struct MyFunctorSparse : MySparseFunctor<double, int>
{
MyFunctorSparse(void) : MySparseFunctor<double, int>(2 , 2) {}
int operator()(const Eigen::VectorXd &aX, //Input
Eigen::VectorXd &aF) const; //Output
int df(const InputType &aF, JacobianType& aFjac);
};
struct MyFunctorDense : MyDenseFunctor<double>
{
MyFunctorDense(void) : MyDenseFunctor<double>(Eigen::Dynamic ,
Eigen::Dynamic) {}
int operator()(const InputType &aX, //Input
ValueType &aF) const; //Output
int df(const InputType &aX, JacobianType& aFjac);
};
.cpp 파일 의 #pragma 번 사용법 #include "stdafx.h를" #I "Main.h"를 nclude
int MyFunctorSparse::operator()(const Eigen::VectorXd &aX, //Input
Eigen::VectorXd &aF) const //Output
{
//F = aX0^2 + aX1^2
aF(0) = aX(0)*aX(0) + aX(1)*aX(1);
aF(1) = 0;
return 0;
}
int MyFunctorDense::operator()(const InputType &aX, //Input
ValueType &aF) const //Output
{
//F = aX0^2 + aX1^2
for (int i = 0; i < aF.size(); i++)
{
aF(i) = i*aX(0)*aX(0) + i*(aX(1)-1)*(aX(1)-1);
}
return 0;
}
int MyFunctorSparse::df(const InputType &aX, JacobianType& aFjac)
{
aFjac.coeffRef(0, 0) = 2*aX(0);
aFjac.coeffRef(0, 1) = 2*aX(1);
aFjac.coeffRef(1, 0) = 0.0;
aFjac.coeffRef(1, 1) = 0.0;
return 0;
}
int MyFunctorDense::df(const InputType &aX, JacobianType& aFjac)
{
for(int i = 0; i< aFjac.size(); i++)
{
aFjac(i, 0) = 2*i*aX(0);
aFjac(i, 1) = 2*i*(aX(1)-1);
}
return 0;
}
int main(int argc, char *argv[])
{
int input;
std::cout << "Enter 1 to run LM with DenseFunctor, Enter 2 to run LM with
SparseFunctor: " << std::endl;
std::cin >> input;
Eigen::VectorXd tX(2);
tX(0) = 10;
tX(1) = 0.5;
int tInputs = tX.rows();
int tValues = 60928;
std::cout << "tX: " << tX << std::endl;
if (input == 1)
{
MyFunctorDense myDenseFunctor;
tInputs = myDenseFunctor.inputs();
tValues = myDenseFunctor.values();
std::cout << "tInputs : " << tInputs << std::endl;
std::cout << "tValues : " << tValues << std::endl;
Eigen::LevenbergMarquardt<MyFunctorDense> lm(myDenseFunctor);
lm.setMaxfev(30);
lm.setXtol(1e-5);
lm.minimize(tX);
}
if (input == 2)
{
MyFunctorSparse myFunctorSparse;
//Eigen::NumericalDiff<MyFunctor> numDiff(myFunctor);
//Eigen::LevenbergMarquardt<Eigen::NumericalDiff<MyFunctor>,double>
lm(numDiff);
Eigen::LevenbergMarquardt<MyFunctorSparse> lm(myFunctorSparse);
lm.setMaxfev(2000);
lm.setXtol(1e-10);
lm.minimize(tX);
}
std::cout << "tX minimzed: " << tX << std::endl;
return 0;
}