다음은 JA에서 K-Means로 작업 정상화 예입니다.
final SimpleKMeans kmeans = new SimpleKMeans();
final String[] options = weka.core.Utils
.splitOptions("-init 0 -max-candidates 100 -periodic-pruning 10000 -min-density 2.0 -t1 -1.25 -t2 -1.0 -N 10 -A \"weka.core.EuclideanDistance -R first-last\" -I 500 -num-slots 1 -S 50");
kmeans.setOptions(options);
kmeans.setSeed(10);
kmeans.setPreserveInstancesOrder(true);
kmeans.setNumClusters(25);
kmeans.setMaxIterations(1000);
final BufferedReader datafile = new BufferedReader(new FileReader("/Users/data.arff");
Instances data = new Instances(datafile);
//normalize
final Normalize normalizeFilter = new Normalize();
normalizeFilter.setInputFormat(data);
data = Filter.useFilter(data, normalizeFilter);
//remove class column[0] from cluster
data.setClassIndex(0);
final Remove removeFilter = new Remove();
removeFilter.setAttributeIndices("" + (data.classIndex() + 1));
removeFilter.setInputFormat(data);
data = Filter.useFilter(data, removeFilter);
kmeans.buildClusterer(data);
System.out.println(kmeans.toString());
// evaluate clusterer
final ClusterEvaluation eval = new ClusterEvaluation();
eval.setClusterer(kmeans);
eval.evaluateClusterer(data);
System.out.println(eval.clusterResultsToString());
경우 CSV는 다음 파일을 아래에 언급 된 데이터 소스로 위의 BufferedReader 라인을 교체해야 :
final DataSource source = new DataSource("/Users/data.csv");
final Instances data = source.getDataSet();
내가 정규화했습니다 그냥 출력 정규화 arff 파일 이후와 이전의 분류를 실행할 수 있습니까? (디스크에 저장하고 싶습니다.) – aneuryzm