2017-09-16 10 views
0

주제 모델링 (lda)에 대한 질문이 있습니다.주제 모델링의 명령어 해석

주제 모델링의 원리를 완전히 이해하지 못해서 이상하게 보일 수 있습니다.

이 문구는 무작위로 끝나나요, 높은 빈도 (확률)입니까?

test = ranking[:5] 

이 구문의 정확한 의미는 무엇입니까?

내 코드가 문서 수만큼 많은 수의 항목을 가져 왔습니다. 문서 수보다 많은 수를 줄일 수는 없다고 들었습니다. 나는 그것의 일부만 추출하고, 일부는 대표자라고 말하며, 어떤 사람들은 빈도가 높다고 말하고, 나는 그 원리를 모른다.

import os 

import numpy as np 
import sklearn.feature_extraction.text as text 

from sklearn import decomposition 

CORPUS_PATH = os.path.join('data', 'test') 
filenames = sorted([os.path.join(CORPUS_PATH, fn) for fn in 
os.listdir(CORPUS_PATH)]) 

len(filenames) 
filenames[:5] 
print(filenames) 

vectorizer = text.CountVectorizer(input='filename', stop_words='english', 
min_df=20, encoding='iso-8859-1') 
dtm = vectorizer.fit_transform(filenames).toarray() 
vocab = np.array(vectorizer.get_feature_names()) 
dtm.shape 
aaa = len(vocab) 

num_topics = 20 
num_top_words = 20 
clf = decomposition.NMF(n_components = num_topics, random_state=1) 

doctopic = clf.fit_transform(dtm) 

#print words associated with topics 
topic_words = [] 
for topic in clf.components_: 
    word_idx = np.argsort(topic)[::-1][0:num_top_words] 
    topic_words.append([vocab[i] for i in word_idx]) 

doctopic = doctopic/np.sum(doctopic, axis=1, keepdims=True) 

novel_names = [] 
for fn in filenames: 
    basename = os.path.basename(fn) 
    name, ext = os.path.splitext(basename) 
    name = name.rstrip('') 
    novel_names.append(name) 

novel_names = np.asarray(novel_names) 
doctopic_orig = doctopic.copy() 

num_groups = len(set(novel_names)) 

doctopic_grouped = np.zeros((num_groups, num_topics)) 

for i, name in enumerate(sorted(set(novel_names))): 
    doctopic_grouped[i, :] = np.mean(doctopic[novel_names == name, :], axis=0) 

doctopic = doctopic_grouped 

novels = sorted(set(novel_names)) 
print("Top NMF topics in...") 
for i in range(len(doctopic)): 
    top_topics = np.argsort(doctopic[i,:])[::-1][0:3] 
    top_topics_str = ' '.join(str(t) for t in top_topics) 
    print("{}: {}".format(novels[i], top_topics_str)) 

for t in range(len(topic_words)): 
    print("Topic {}: {}".format(t, ' '.join(topic_words[t][:15]))) 

austen_indices, cbronte_indices = [], [] 
for index, fn in enumerate(sorted(set(novel_names))): 
    if "Austen" in fn: 
     austen_indices.append(index) 
    elif "CBronte" in fn: 
     cbronte_indices.append(index) 

austen_avg = np.mean(doctopic[austen_indices, :], axis=0) 
cbronte_avg = np.mean(doctopic[cbronte_indices, :], axis=0) 
keyness = np.abs(austen_avg - cbronte_avg) 
ranking = np.argsort(keyness)[::-1] 
test = ranking[:5] 

print(test) 

답변

1

ranking[:5] 슬라이스로 알려져있다. 이 파일은 ranking의 하위 목록입니다. ranking[0:5]과 같으며 목록의 처음 5 개 요소를 사용합니다. 자세한 내용은 here에 설명되어 있습니다. (테이블에서 찾아보고 특히 각주 4 참조)