1
내 응용 프로그램에서는 3D 개체 재구성을 위해 2 대의 카메라를 사용합니다. 카메라를 보정하려면 카메라 포즈 (회전 및 평행 이동)를 찾기 위해 2 세트의 이미지를 사용하여 기본 매트릭스를 계산합니다. R과 T를 찾기 위해 SVD를 사용합니다. 그러나 매트릭스의 정확성을 검사하려고 시도하면 전혀 작동하지 않습니다. 재구성 된 점의 위치는 실제 위치와 일치하지 않습니다.기본 매트릭스를 테스트하는 방법은 무엇입니까?
내가 올바른 방법으로 확인하려면 어떻게해야합니까?
D2=[-0.168164529475, 0.110811875773, -0.000204013531649, -9.05039442317e-05, 0.0737585102411];
D1=[-0.187817541965, 0.351429195367, -0.000521080240718, -0.00052088823018, -1.00569541826];
K2=[2178.5537139, 0.0, 657.445233702;0.0, 2178.40086319, 494.319735021;0.0, 0.0, 1.0];
K1=[2203.30000377, 0.0, 679.24264123;0.0, 2202.99249047, 506.265831986;0.0, 0.0, 1.0];
load pts1.dat; % load image points from CAM42
load pts2.dat; % load image points from CAM49
% calcul de la matrice fondamentale
disp('Finding stereo camera matrices ...');
disp('(By default RANSAC optimasation method is used.)');
disp('- 4 : LTS');
disp('- 3 : MSAC');
disp('- 2 : RANSAC');
disp('- 1 : Norm8Point');
disp('- 0 : LMedS');
c = input('Chose method to find F :', 's');
if nargin > 0
switch c
case 4
method = 'LTS';
case 3
method = 'MSAC';
case 2
method = 'RANSAC';
case 1
method = 'Norm8Point';
otherwise
method = 'LMedS';
end
else
method = 'RANSAC';
end
%F = estimateFundamentalMatrix(points2', points1', 'Method', method, 'NumTrials', 4000, 'DistanceThreshold', 1e-4)
% calcul de la matrice essentielle
E = K2' * F * K1;
% calcul de R et T à partir de la décomposition SVD
[U S V] = svd(E);
Z = [0 -1 0;
1 0 0;
0 0 0]; % matrice anti-symetrique
W = [0 -1 0;
1 0 0;
0 0 1]; % matrice orthogonale
fprintf(sprintf('\ndev(Vt) = %f', det(V')));
fprintf(sprintf('\ndet(U) = %f', det(U)));
Ra = U * W * V'
Rb = U * W'* V'
T = U * Z * U';
T0 = U(: , 3)
T = [T(2,1); -T(3, 1); T(3, 2)];
disp('=======================');
% R1 = [Ra T0]
% R2 = [Ra -T0]
% R3 = [Rb T0]
% R4 = [Rb -T0]
% test des matrices trouvées. ---------------------------------------------
pti = 10; % point index
x1 = points1(pti,:)';
disp('x1 (real):'); x1 = [x1;1]
x2 = points2(pti,:)';
disp('x2 (real):'); x2 = [x2;1]
disp('===========');
x2 = Ra*x1 + T0 % [Ra, T0]
x2 = Ra*x1 - T0 % [Ra, -T0]
x2 = Rb*x1 + T % [Rb, T0]
x2 = Rb*x1 - T % [Rb, -T0]
fprintf('\nx1t*F*x2 = %f\n',x2'*F*x1);
disp('Epipolar line');
l1 = F*x1
l2 = F*x2
감사합니다 :
여기 내가 사용하는 내 MATLAB 코드입니다.
현실에서는 결코 0이 아니지만 0.1에서 1 사이이면 좋습니다. – aledalgrande