2016-10-09 11 views
1

중첩 효과의 몇 가지 쌍 비교를 조사하려는 모델이 있습니다. 모델을 올바르게 작성했는지 확신 할 수 없으며 중첩 된 용어를 실제로 평가하는 방법을 이해하지 못합니다.중첩 효과의 pairwise 비교 평가

내 데이터 프레임에는 '품질'이라는 응답 변수와 '사이트'라는 월 및 일이라는 세 가지 예측 변수가 있습니다. 실험 설정에서 각 개인의 품질을 측정했습니다. 두 개의 사이트가있었습니다. 4 개월 동안 각 사이트를 샘플링했습니다. 매월 4 회의 연속 샘플링이있었습니다. 같은 날에 다른 날에 개인과 크게 다른 품질을 가진 사람이 있는지 알고 싶습니다. 나는 한 달에서 다른 달까지 일을 비교하는 것에는 관심이 없다. 나는 그 모델은 나를 위해 작동하는 것 같다이

library(lsmeans) 
fit1<-aov(Quality~Site*Month + (Site*Month)/Day, data=test) 

같은 모델을 작성했습니다

test<- structure(list(Site = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("H", "W"), class = "factor"), 
Day = structure(c(19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 15L, 15L, 15L, 
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 26L, 26L, 26L, 26L, 
26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 
26L, 26L, 8L, 8L, 8L, 8L, 8L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 
17L, 17L, 17L, 17L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 
14L, 14L, 14L, 14L, 14L, 25L, 25L, 25L, 11L, 11L, 11L, 11L, 
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 22L, 
22L, 7L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 
16L, 16L, 16L, 16L, 16L, 16L, 13L, 13L, 13L, 13L, 13L, 13L, 
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 24L, 24L, 24L, 
24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 10L, 
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
10L, 10L, 10L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 
21L, 21L, 21L, 21L, 21L, 21L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 12L, 
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 
23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 
23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 
23L, 23L, 23L, 23L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
9L, 9L, 9L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 
20L, 20L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L), .Label = c("H1", "H10", "H11", "H12", "H13", "H14", 
"H15", "H16", "H2", "H3", "H4", "H6", "H7", "H8", "H9", "W10", 
"W11", "W12", "W13", "W2", "W3", "W4", "W6", "W7", "W8", 
"W9"), class = "factor"), Month = structure(c(3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L, 2L, 2L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("August", 
"November", "October", "September"), class = "factor"), Quality = c(42.535, 
46.651, 45.466, 43.483, 44.896, 46.581, 47.494, 47.529, 46.562, 
45.111, 45.982, 48.367, 47.39, 45.388, 46.313, 44.732, 48.641, 
46.614, 45.234, 45.96, 44.795, 44.333, 46.559, 46.826, 44.166, 
45.19, 46.661, 45.481, 46.828, 43.487, 49.505, 48.558, 45.218, 
44.802, 43.975, 47.23, 44.85, 46.213, 44.726, 43.036, 47.211, 
45.536, 44.62, 44.297, 36.115, 39.314, 42.349, 44.919, 46.296, 
46.317, 45.858, 45.036, 45.861, 48.85, 45.337, 45.03, 47.4, 
48.78, 49.829, 45.12, 45.599, 43.235, 44.735, 44.889, 45.666, 
46.475, 44.888, 46.215, 42.242, 46.341, 45.992, 43.549, 46.612, 
44.232, 42.706, 42.064, 43.837, 43.351, 41.064, 44.364, 42.597, 
45.561, 44.51, 45.184, 44.896, 45.772, 47.43, 44.08, 44.697, 
45.141, 43.776, 47.175, 46.115, 43.39, 47.426, 47.636, 43.672, 
45.987, 45.338, 46.644, 42.192, 47.011, 45.856, 44.764, 36.285, 
33.741, 34.324, 35.101, 46.844, 42.52, 48.649, 44.364, 44.688, 
45.822, 44.945, 44.311, 44.684, 42.787, 45.516, 46.16, 46.289, 
45.661, 45.772, 43.845, 48.717, 46.567, 44.719, 46.585, 45.33, 
45.995, 48.053, 44.734, 51.233, 44.597, 45.742, 46.567, 46.478, 
44.382, 47.316, 46.205, 45.111, 47.575, 46.014, 44.533, 45.347, 
45.983, 47.053, 44.855, 48.021, 45.155, 49.248, 45.634, 48.815, 
45.413, 43.091, 47.854, 45.19, 47.495, 47.323, 48.076, 44.183, 
43.182, 46.267, 41.58, 44.237, 45.607, 48.517, 44.639, 44.773, 
42.787, 43.965, 46.629, 46.256, 47.688, 44.126, 44.712, 47.097, 
44.561, 47.306, 45.323, 46.328, 45.832, 46.075, 46.778, 47.445, 
45.582, 47.691, 45.193, 48.453, 46.301, 44.847, 43.675, 46.066, 
47.896, 45.2, 44.959, 47.401, 46.267, 45.743, 47.411, 46.926, 
46.24, 46.212, 44.988, 36.552, 38.027, 47.355, 40.147, 38.094, 
39.043, 37.589, 46.491, 46.413, 43.92, 45.228, 46.319, 44.764, 
47.376, 43.924, 45.203, 45.418, 45.684, 46.34, 43.655, 44.365, 
46.927, 48.269, 45.473, 46.451, 42.752, 48.346, 47.832, 46.534, 
46.47, 43.282, 47.749, 44.856, 46.551, 45.925, 45.669, 47.263, 
44.367, 47.017, 42.922, 44.904, 48.85, 45.535, 48.512, 46.154, 
47.306, 46.571, 46.619, 46.092, 43.808, 47.7, 48.482, 44.407, 
45.442, 44.771, 46.373, 47.777, 43.012, 46.154, 45.203, 46.443, 
43.461, 45.714, 40.776, 48.949, 45.72, 48.269, 45.782, 43.945, 
45.382, 43.729, 44.187, 45.267, 46.012, 42.234, 43.431, 41.973, 
45.597, 45.993, 46.303, 44.493, 44.981, 46.487, 45.01, 47.009, 
46.904, 48.277, 48.585, 48.625, 47.511, 44.011, 42.21, 47.124, 
44.244, 47.76, 47.299, 45.278, 45.564, 44.621, 46.75, 45.396, 
44.947, 46.185, 45.399, 46.095, 49.545, 47.211, 43.613, 48.494, 
44.102, 45.888, 45.473, 47.222, 46.681, 45.863, 47.834, 48.386, 
46.979, 46.318, 46.061, 46.347, 47.976, 47.079, 48.254, 47.643, 
46.244, 46.717, 44.574, 45.177, 44.879, 46.485, 47.416, 50.235, 
45.626, 48.117, 44.529, 44.281, 47.087, 47.356, 43.234, 45.841, 
43.487, 42.997, 35.322, 45.554, 44.973, 43.396, 43.023, 44.65, 
47.088, 41.934, 45.704, 44.559, 37.969, 42.687, 42.995, 45.287, 
45.21, 43.335, 46.892, 45.534, 44.19, 43.606, 44.173, 49.334, 
44.888, 47.477, 47.054, 41.041, 46.629, 45.049, 44.478, 40.278, 
43.044, 43.575, 46.194, 42.688, 41.361, 46.828, 45.534, 47.395, 
45.431, 45.433, 45.331, 43.947, 47.371, 48.308, 45.726, 41.833, 
45.782, 44.756, 45.406, 45.661, 43.447, 46.932, 45.495, 44.349, 
40.493, 43.603, 48.151, 44.037, 44.379, 45.934, 44.854, 42.321, 
46.198, 44.622, 46.077, 45.306, 48.951, 47.972, 42.581, 43.608, 
45.988, 44.955, 45.097, 46.768, 44.722, 45.971, 46.612, 48.956, 
47.669, 47.757, 47.189, 44.184, 48.464, 49.546, 48.021, 45.448, 
45.573, 46.778, 45.769, 45.419, 45.277, 47.489, 46.762, 46.238, 
47.509, 47.249, 46.243, 46.124, 46.801, 47.385, 43.614, 44.661, 
45.96, 48.791, 47.872, 42.402, 45.651, 45.927, 43.781, 49.923, 
47.153, 46.87, 43.767, 47.3, 46.897, 44.932, 45.135, 50.124, 
45.366, 45.063, 45.958, 46.731, 43.863, 45.095, 47.755, 45.446, 
45.145, 45.998, 46.377, 44.369, 46.485, 48.852, 45.365, 45.934, 
44.856, 48.195, 45.424, 49.05, 46.115, 43.077, 48.305, 44.784, 
44.934, 46.253, 46.203, 48.36, 47.36, 48.872, 44.803)), .Names = c("Site", 
"Day", "Month", "Quality"), class = "data.frame", row.names = c(NA, 
-496L)) 

다음과 같이

내 데이터 프레임이다. 상호 작용 기간 및 사이트 및 월의 주요 효과를 평가하는 방법을 이해하지만 몇 가지 이유로 하루를 평가하는 데 어려움을 겪고 있습니다. 나는 시도했다

dayeffects<-lsmeans(fit1, pairwise~Site*Month/Day, adjust="bonferroni") 
results <- dayeffects[[2]] 
summary(results)[!is.na(summary(results)[,4]),] 

그러나 이것은 중첩 구조를 따르기보다는 모든 쌍 비교를 테스트하는 것처럼 보입니다. 위에서 말했듯이, 나는 같은 달과 현장에서 발생한 날들을 비교하기를 원합니다.

나는 위에서 내가 원하는 비교를 할 수 있음을 알고 있지만, 내가 틀린 일을하고 있다고 느낍니다. 또한 그것은 bonferroni 조정을 지나치게 수정합니다.

도움이 될 것입니다. 감사합니다

+0

죄송 체크 p.adjustment, 나는 아마 내가 모델 방법을 서면으로 작성했습니다 따라서 왜, 내가 모델의 다른 효과를 평가하려는 않음을 추가해야합니다. 난 그냥 분석의 일부가 문제가 없어 –

+0

그래도하지만 각 사이트를 구체적으로 테스트하고 싶습니다. 평균 이상이 아닙니다. 중첩 된 디자인에서 고유 한 ID가 필요하다고 생각했기 때문에 그렇게 코딩했습니다. –

+0

'library (glht)'를보아야 만합니까? – Nate

답변

0

좋아, 내가 내 생각을 정리했다. SiteMonth에 의해 lsmeans(model, pairwise ~ Day | Site * Month)으로 비교할 수 있습니다. (~ (Site*Month)/Day을 모델로 사용했지만이 항목에서는 이 고유하기 때문에 ~ Site + Month + Site:Month:Day 또는 ~ Site * Month * Day이 동일한 결과를 반환합니다.

fit <-aov(Quality ~ (Site*Month)/Day, data=test)  # this model is equivalent to OP's one. 
res <- lsmeans(fit, pairwise ~ Day | Site * Month, adjust="bonferroni") 
results <- summary(res[[2]])[!is.na(summary(res[[2]])[,4]),] 

> results[25:30,] 
Site = H, Month = September: 
contrast estimate  SE df t.ratio p.value 
H6 - H7 -1.0626904 0.5348000 470 -1.987 0.2850 
H6 - H8 -0.1373969 0.6588578 470 -0.209 1.0000 
H6 - H9 0.3862017 0.5567090 470 0.694 1.0000 
H7 - H8 0.9252934 0.6504561 470 1.423 0.9332 
H7 - H9 1.4488921 0.5467399 470 2.650 0.0499 
H8 - H9 0.5235987 0.6685859 470 0.783 1.0000 
res0 <- lsmeans(fit, pairwise ~ Day | Site * Month, adjust="none") 
results0 <- summary(res0[[2]])[!is.na(summary(res0[[2]])[,4]),] # get non-adjusted p.value 
res0.p <- p.adjust(results0$p.value[25:30], "bonferroni") # semi-manually p.adjustment 
identical(results$p.value[25:30], res0.p)     # [1] TRUE 
+0

건배, 도움 주셔서 감사합니다. –