비디오를 읽는 opencv 코드를 작성하고 각 프레임에서 빨간색 픽셀을 찾은 다음 빨간색 픽셀 수가 특정 양을 초과하면 프레임을 png 파일로 내 보냅니다 . 코드는 잘 작동하지만 비디오의 길이가 4-5 시간이므로 계산 시간을 줄이는 방법을 찾고 있습니다. parallel_pipeline을 사용하여 게시물을 읽었을 때 프로세스 사용 속도가 상당히 빨라 졌는지 궁금합니다. 내가 읽은 것을 바탕으로 각 주요 작업 (비디오 프레임 읽기, 색상 감지/inRange를 통한 임계 값 설정, 이미지 저장)마다 스레드를 지정해야하는 것 같습니다. 그래서 제 질문은 :계산 시간을 줄이기 위해 코드를 더 잘 스레드하는 방법
1) opencv가 수행하는 기본 멀티 스레딩과 비교하여 프로세스가 빨라 집니까?
2) 코드가 수행해야하는 것을 감안할 때 parallel_pipeline보다 멀티 스레딩을위한 적절한 방법이 있습니까?
나는이 주제에 대해 상당히 새로운 것이므로 어떤 도움이라도 대단히 감사합니다!
waitKey(10);
그런 '\n'
와 endl
교체 :
/**
* @CheckMotionParallel
* @Motion detection using color detection and image thresholding
*/
//opencv
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/videoio.hpp"
#include <opencv2/highgui.hpp>
#include <opencv2/video.hpp>
//C
#include <stdio.h>
//C++
#include <iostream>
#include <sstream>
#include "tbb/blocked_range.h"
#include "tbb/parallel_for.h"
#include "tbb/parallel_reduce.h"
#include "tbb/task_scheduler_init.h"
#include "tbb/mutex.h"
#include "tbb/tbb_thread.h"
#include "tbb/blocked_range2d.h"
using namespace cv;
using namespace std;
using namespace tbb;
void help();
void help()
{
cout
<< "--------------------------------------------------------------------------" << endl
<< "Note for program CheckMotion" << endl
<< "CheckMotion does the following" << endl
<< "1) It searches each frame in a video and looks for a specified range of colors in the frame" << endl
<< "2) Pixels falling within the range will be converted to white while everything else is turned to black" << endl
<< "3) For each frame, the program gives: frame number/time stamp, total pixel count, and white pixel count" << endl
<< "4) For frames whose white pixel count exceeds a threshold, it will export those frames as individial png files" << endl
<< "--------------------------------------------------------------------------" << endl
<< endl;
}
int64 startTime;
int NumThreads = task_scheduler_init::default_num_threads();
int main(int argc, char**)
{
//Print out program note
help();
///Part I: Read-in the video
VideoCapture cap("/Users/chi/Desktop/Video analyses/testvideo4.mp4");
//Error message if the video cannot be opened
//Create an object denoting the frames
//Create a window for showing the video as CheckMotion runs
//For loop looking through frames
if(cap.isOpened()) {
startTime = getTickCount();
Mat frame;
for(;;)
{
//Show each frame in the video window previously created
double tfreq = getTickFrequency();
double secs = ((double) getTickCount()-startTime)/tfreq;
cap >> frame;
// namedWindow("Frame");
// imshow("Frame",frame);
//
waitKey(10);
//Create a string for frame number that gets updated for each cycle of the loop
stringstream ss;
ss << cap.get(CAP_PROP_POS_FRAMES);
string FrameNumberString = ss.str();
stringstream maskedfilename;
stringstream rawfilename;
//Create filenames for later use in result output and image save using frame number as ref
maskedfilename << "/Users/chi/Desktop/test/masked" << FrameNumberString.c_str() << ".png";
rawfilename << "/Users/chi/Desktop/test/raw" << FrameNumberString.c_str() << ".png";
///Part II: Image thresholding and image saving
//Create an object representing new images after thresholding
Mat masked;
//inRange function that convert the pixels that fall within the specified range to white and everything else to black
//The Range is specified by a lower [Scalar(200,200,200)] and an upper [Scalar(255,255,255)] threshold
//A color is defined by its BGR score
//The thresholded images will then be represented by the object "masked"
inRange(frame, Scalar(10,0,90), Scalar(50,50,170), masked);
//Creating integer variables for total pixel count and white pixel count for each frame
int totalpixel;
int whitepixel;
//Total pixel count equals the number of rows and columns of the frame
totalpixel = masked.rows*masked.cols;
//Using countNonZero function to count the number of white pixels
whitepixel = countNonZero(masked);
//Output frame number, total pixel count and white pixel count for each frame
//Exit the loop when reaching the last frame (i.e. pixel count drops to 0)
if(totalpixel==0){
cout << "End of the video" << endl;
cout << "Number of threads: " << NumThreads << endl;
cap.release();
break;
}
else {
cout
<< "Frame:" << ss.str() << endl
<< "Number of total pixels:" << totalpixel << endl
<< "Pixels of target colors:" << whitepixel << endl
<< "Run time = " << fixed << secs << "seconds" << endl
<< endl;
//Save the frames with white pixel count larger than a user-determined value (100 in present case)
//Save both the orignal as well as the procesed images
if (whitepixel > 50){
imwrite(rawfilename.str(),frame);
imwrite(maskedfilename.str(),masked);
}
}
}
}
}
프로파일 러를 사용하여 병목 현상을 확인한 다음 해결합니다. –
감사 캡틴 분명! 나는 그것을 조사 할 것이다. – Chi