Tensorflow 제공된 그림에서 객체를 인식하기 위해 tutorial 다음에 this repo을 사용하여 그림에서 객체를 반환하는 데 성공했습니다. 예를 들어 이 내가 입력으로 사용되는 사진입니다 :그림 안에서 인식 된 물체의 색상을 얻을 수있는 방법이 있습니까?
은 여기 내 프로그램의 출력입니다 :
내가 원하는 모든 인식 된 항목의 색상을 얻을 수 있습니다 (마지막 사건에 대한 빨간 저지), 그게 가능하니? 여기
은 '당신은 당신이 돈 그래서 즉, 약간의 훈련을받은 클래스에서 이미지를 분류, 지정된 이미지의 레이블을 예측하는 코드를 사용하는 (단지 작은 변화와 마지막 링크에서) 코드/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
package com.test.sec.compoment;
import java.io.IOException;
import java.io.PrintStream;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.List;
import org.tensorflow.DataType;
import org.tensorflow.Graph;
import org.tensorflow.Output;
import org.tensorflow.Session;
import org.tensorflow.Tensor;
import org.tensorflow.TensorFlow;
import org.tensorflow.types.UInt8;
/** Sample use of the TensorFlow Java API to label images using a pre-trained model. */
public class ImageRecognition {
private static void printUsage(PrintStream s) {
final String url =
"https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip";
s.println(
"Java program that uses a pre-trained Inception model (http://arxiv.org/abs/1512.00567)");
s.println("to label JPEG images.");
s.println("TensorFlow version: " + TensorFlow.version());
s.println();
s.println("Usage: label_image <model dir> <image file>");
s.println();
s.println("Where:");
s.println("<model dir> is a directory containing the unzipped contents of the inception model");
s.println(" (from " + url + ")");
s.println("<image file> is the path to a JPEG image file");
}
public void index() {
String modelDir = "C:/Users/Admin/Downloads/inception5h";
String imageFile = "C:/Users/Admin/Desktop/red-tshirt.jpg";
byte[] graphDef = readAllBytesOrExit(Paths.get(modelDir, "tensorflow_inception_graph.pb"));
List<String> labels =
readAllLinesOrExit(Paths.get(modelDir, "imagenet_comp_graph_label_strings.txt"));
byte[] imageBytes = readAllBytesOrExit(Paths.get(imageFile));
try (Tensor<Float> image = constructAndExecuteGraphToNormalizeImage(imageBytes)) {
float[] labelProbabilities = executeInceptionGraph(graphDef, image);
int bestLabelIdx = maxIndex(labelProbabilities);
System.out.println(
String.format("BEST MATCH: %s (%.2f%% likely)",
labels.get(bestLabelIdx),
labelProbabilities[bestLabelIdx] * 100f));
}
}
private static Tensor<Float> constructAndExecuteGraphToNormalizeImage(byte[] imageBytes) {
try (Graph g = new Graph()) {
GraphBuilder b = new GraphBuilder(g);
// Some constants specific to the pre-trained model at:
// https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
//
// - The model was trained with images scaled to 224x224 pixels.
// - The colors, represented as R, G, B in 1-byte each were converted to
// float using (value - Mean)/Scale.
final int H = 224;
final int W = 224;
final float mean = 117f;
final float scale = 1f;
// Since the graph is being constructed once per execution here, we can use a constant for the
// input image. If the graph were to be re-used for multiple input images, a placeholder would
// have been more appropriate.
final Output<String> input = b.constant("input", imageBytes);
final Output<Float> output =
b.div(
b.sub(
b.resizeBilinear(
b.expandDims(
b.cast(b.decodeJpeg(input, 3), Float.class),
b.constant("make_batch", 0)),
b.constant("size", new int[] {H, W})),
b.constant("mean", mean)),
b.constant("scale", scale));
try (Session s = new Session(g)) {
return s.runner().fetch(output.op().name()).run().get(0).expect(Float.class);
}
}
}
private static float[] executeInceptionGraph(byte[] graphDef, Tensor<Float> image) {
try (Graph g = new Graph()) {
g.importGraphDef(graphDef);
try (Session s = new Session(g);
Tensor<Float> result =
s.runner().feed("input", image).fetch("output").run().get(0).expect(Float.class)) {
final long[] rshape = result.shape();
if (result.numDimensions() != 2 || rshape[0] != 1) {
throw new RuntimeException(
String.format(
"Expected model to produce a [1 N] shaped tensor where N is the number of labels, instead it produced one with shape %s",
Arrays.toString(rshape)));
}
int nlabels = (int) rshape[1];
return result.copyTo(new float[1][nlabels])[0];
}
}
}
private static int maxIndex(float[] probabilities) {
int best = 0;
for (int i = 1; i < probabilities.length; ++i) {
if (probabilities[i] > probabilities[best]) {
best = i;
}
}
return best;
}
private static byte[] readAllBytesOrExit(Path path) {
try {
return Files.readAllBytes(path);
} catch (IOException e) {
System.err.println("Failed to read [" + path + "]: " + e.getMessage());
System.exit(1);
}
return null;
}
private static List<String> readAllLinesOrExit(Path path) {
try {
return Files.readAllLines(path, Charset.forName("UTF-8"));
} catch (IOException e) {
System.err.println("Failed to read [" + path + "]: " + e.getMessage());
System.exit(0);
}
return null;
}
// In the fullness of time, equivalents of the methods of this class should be auto-generated from
// the OpDefs linked into libtensorflow_jni.so. That would match what is done in other languages
// like Python, C++ and Go.
static class GraphBuilder {
GraphBuilder(Graph g) {
this.g = g;
}
Output<Float> div(Output<Float> x, Output<Float> y) {
return binaryOp("Div", x, y);
}
<T> Output<T> sub(Output<T> x, Output<T> y) {
return binaryOp("Sub", x, y);
}
<T> Output<Float> resizeBilinear(Output<T> images, Output<Integer> size) {
return binaryOp3("ResizeBilinear", images, size);
}
<T> Output<T> expandDims(Output<T> input, Output<Integer> dim) {
return binaryOp3("ExpandDims", input, dim);
}
<T, U> Output<U> cast(Output<T> value, Class<U> type) {
DataType dtype = DataType.fromClass(type);
return g.opBuilder("Cast", "Cast")
.addInput(value)
.setAttr("DstT", dtype)
.build()
.<U>output(0);
}
Output<UInt8> decodeJpeg(Output<String> contents, long channels) {
return g.opBuilder("DecodeJpeg", "DecodeJpeg")
.addInput(contents)
.setAttr("channels", channels)
.build()
.<UInt8>output(0);
}
<T> Output<T> constant(String name, Object value, Class<T> type) {
try (Tensor<T> t = Tensor.<T>create(value, type)) {
return g.opBuilder("Const", name)
.setAttr("dtype", DataType.fromClass(type))
.setAttr("value", t)
.build()
.<T>output(0);
}
}
Output<String> constant(String name, byte[] value) {
return this.constant(name, value, String.class);
}
Output<Integer> constant(String name, int value) {
return this.constant(name, value, Integer.class);
}
Output<Integer> constant(String name, int[] value) {
return this.constant(name, value, Integer.class);
}
Output<Float> constant(String name, float value) {
return this.constant(name, value, Float.class);
}
private <T> Output<T> binaryOp(String type, Output<T> in1, Output<T> in2) {
return g.opBuilder(type, type).addInput(in1).addInput(in2).build().<T>output(0);
}
private <T, U, V> Output<T> binaryOp3(String type, Output<U> in1, Output<V> in2) {
return g.opBuilder(type, type).addInput(in1).addInput(in2).build().<T>output(0);
}
private Graph g;
}
}
이 프로그램은 당신이 그것을 밖으로 분할을 얻으려면 완전히 길쌈 네트워크를 사용하는 데 필요한 개시 네트워크 https://arxiv.org/pdf/1512.00567v2.pdf을 사용하고 있습니다. – matt
@matt 여기에서 분실했습니다 –
이 네트워크는 세그먼트 화를 생성하지 않습니다. 그것은 단지 이미지를 분류합니다. 저지 모양이나 픽셀을 추출하지 않습니다. 따라서 기존 코드를 사용하려면 이미지의 히스토그램을 가져 와서 가장 일반적인 색상을 잡는 것이 좋습니다. – matt