2017-04-14 1 views
1

kerg.bviously에 의해 8 분류 작업에 사용되는 kaggle에서 DL 모델을 다운로드했습니다. 밀도가 높습니다 (8) model.and 꼭대기에서 2-classifier에 사용하고 싶기 때문에 dense (8)에서 dense (2)로 상위 연결을 수정합니다. 이것이 나에게 효과적이라고 생각합니다. 그러나, 터미널은 스크립트를 실행할 때 오류를보고합니다. 인내심과 도움을 주셔서 감사합니다. 여기keras 별 8 분류 작업에 사용되는 kaggle에서 DL 모델을 다운로드했습니다.

Error when checking model target: expected dense_3 to have shape (None, 2) but got array with shape (1333L, 8L) 

아래 오류가 어쩌면 긴 코드,

# %load kaggle_dog_cat_classifier.py 
__author__ = 'JeofuHuang: https://www.kaggle.com/jeofuhuang' 
import numpy as np 
np.random.seed(2016) 

import os 
import glob 
import cv2 
import datetime 
import pandas as pd 
import time 
import warnings 
warnings.filterwarnings("ignore") 

from sklearn.cross_validation import KFold 
from keras.models import Sequential 
from keras.layers.core import Dense, Dropout, Flatten 
from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D 
from keras.optimizers import SGD 
from keras.callbacks import EarlyStopping 
from keras.utils import np_utils 
from sklearn.metrics import log_loss 
from keras import __version__ as keras_version 

def get_im_cv2(path): 
    img = cv2.imread(path) 
    resized = cv2.resize(img, (32, 32), cv2.INTER_LINEAR) 
    return resized 


def load_train(): 
    X_train = [] 
    X_train_id = [] 
    y_train = [] 
    start_time = time.time() 

    print('Read train images') 
    folders = ['dog', 'cat'] 
    for fld in folders: 
     index = folders.index(fld) 
     print('Load folder {} (Index: {})'.format(fld, index)) 
     path = os.path.join('.', 'input', 'train', fld, '*.jpg') 
     files = glob.glob(path) 
     for fl in files: 
      flbase = os.path.basename(fl) 
      img = get_im_cv2(fl) 
      X_train.append(img) 
      X_train_id.append(flbase) 
      y_train.append(index) 

    print('Read train data time: {} seconds'.format(round(time.time() - start_time, 2))) 
    return X_train, y_train, X_train_id 


def load_test(): 
    path = os.path.join('.', 'input', 'test', '*.jpg') 
    files = sorted(glob.glob(path)) 

    X_test = [] 
    X_test_id = [] 
    for fl in files: 
     flbase = os.path.basename(fl) 
     img = get_im_cv2(fl) 
     X_test.append(img) 
     X_test_id.append(flbase) 

    return X_test, X_test_id 


def create_submission(predictions, test_id, info): 
    result1 = pd.DataFrame(predictions, columns=['dog', 'cat']) 
    result1.loc[:, 'image'] = pd.Series(test_id, index=result1.index) 
    now = datetime.datetime.now() 
    sub_file = 'submission_' + info + '_' + str(now.strftime("%Y-%m-%d-%H-%M")) + '.csv' 
    result1.to_csv(sub_file, index=False) 


def read_and_normalize_train_data(): 
    train_data, train_target, train_id = load_train() 

    print('Convert to numpy...') 
    train_data = np.array(train_data, dtype=np.uint8) 
    train_target = np.array(train_target, dtype=np.uint8) 

    print('Reshape...') 
    train_data = train_data.transpose((0, 3, 1, 2)) 

    print('Convert to float...') 
    train_data = train_data.astype('float32') 
    train_data = train_data/255 
    train_target = np_utils.to_categorical(train_target, 8) 

    print('Train shape:', train_data.shape) 
    print(train_data.shape[0], 'train samples') 
    return train_data, train_target, train_id 


def read_and_normalize_test_data(): 
    start_time = time.time() 
    test_data, test_id = load_test() 

    test_data = np.array(test_data, dtype=np.uint8) 
    test_data = test_data.transpose((0, 3, 1, 2)) 

    test_data = test_data.astype('float32') 
    test_data = test_data/255 

    print('Test shape:', test_data.shape) 
    print(test_data.shape[0], 'test samples') 
    print('Read and process test data time: {} seconds'.format(round(time.time() - start_time, 2))) 
    return test_data, test_id 


def dict_to_list(d): 
    ret = [] 
    for i in d.items(): 
     ret.append(i[1]) 
    return ret 


def merge_several_folds_mean(data, nfolds): 
    a = np.array(data[0]) 
    for i in range(1, nfolds): 
     a += np.array(data[i]) 
    a /= nfolds 
    return a.tolist() 


def create_model(): 
    model = Sequential() 
    model.add(ZeroPadding2D((1, 1), input_shape=(3, 32, 32), dim_ordering='th')) 
    model.add(Convolution2D(4, 3, 3, activation='relu', dim_ordering='th')) 
    model.add(ZeroPadding2D((1, 1), dim_ordering='th')) 
    model.add(Convolution2D(4, 3, 3, activation='relu', dim_ordering='th')) 
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), dim_ordering='th')) 

    model.add(ZeroPadding2D((1, 1), dim_ordering='th')) 
    model.add(Convolution2D(8, 3, 3, activation='relu', dim_ordering='th')) 
    model.add(ZeroPadding2D((1, 1), dim_ordering='th')) 
    model.add(Convolution2D(8, 3, 3, activation='relu', dim_ordering='th')) 
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), dim_ordering='th')) 

    model.add(Flatten()) 
    model.add(Dense(32, activation='relu')) 
    model.add(Dropout(0.5)) 
    model.add(Dense(32, activation='relu')) 
    model.add(Dropout(0.5)) 
    model.add(Dense(2, activation='softmax')) 

    sgd = SGD(lr=1e-2, decay=1e-6, momentum=0.9, nesterov=True) 
    model.compile(optimizer=sgd, loss='categorical_crossentropy') 

    return model 


def get_validation_predictions(train_data, predictions_valid): 
    pv = [] 
    for i in range(len(train_data)): 
     pv.append(predictions_valid[i]) 
    return pv 


def run_cross_validation_create_models(nfolds=10): 
    # input image dimensions 
    batch_size = 16 
    nb_epoch = 30 
    random_state = 51 

    train_data, train_target, train_id = read_and_normalize_train_data() 

    yfull_train = dict() 
    kf = KFold(len(train_id), n_folds=nfolds, shuffle=True, 
random_state=random_state) 
    num_fold = 0 
    sum_score = 0 
    models = [] 
    for train_index, test_index in kf: 
     model = create_model() 
     X_train = train_data[train_index] 
     Y_train = train_target[train_index] 
     X_valid = train_data[test_index] 
     Y_valid = train_target[test_index] 

     num_fold += 1 
     print('Start KFold number {} from {}'.format(num_fold, nfolds)) 
     print('Split train: ', len(X_train), len(Y_train)) 
     print('Split valid: ', len(X_valid), len(Y_valid)) 

     callbacks = [ 
      EarlyStopping(monitor='val_loss', patience=3, verbose=0), 
     ] 
     model.fit(X_train, Y_train, batch_size=batch_size, 
      nb_epoch=nb_epoch,shuffle=True, verbose=2, validation_data= 
      (X_valid, Y_valid), callbacks=callbacks) 

     predictions_valid = model.predict(X_valid.astype('float32'), 
      batch_size=batch_size, verbose=2) 
     score = log_loss(Y_valid, predictions_valid) 
     print('Score log_loss: ', score) 
     sum_score += score*len(test_index) 

     # Store valid predictions 
     for i in range(len(test_index)): 
      yfull_train[test_index[i]] = predictions_valid[i] 

     models.append(model) 

    score = sum_score/len(train_data) 
    print("Log_loss train independent avg: ", score) 

    info_string = 'loss_' + str(score) + '_folds_' + str(nfolds) + '_ep_' + 
str(nb_epoch) 
    return info_string, models 


def run_cross_validation_process_test(info_string, models): 
    batch_size = 16 
    num_fold = 0 
    yfull_test = [] 
    test_id = [] 
    nfolds = len(models) 

    for i in range(nfolds): 
     model = models[i] 
     num_fold += 1 
     print('Start KFold number {} from {}'.format(num_fold, nfolds)) 
     test_data, test_id = read_and_normalize_test_data() 
     test_prediction = model.predict(test_data, batch_size=batch_size, 
verbose=2) 
     yfull_test.append(test_prediction) 

    test_res = merge_several_folds_mean(yfull_test, nfolds) 
    info_string = 'loss_' + info_string \ + '_folds_' + str(nfolds) 
    create_submission(test_res, test_id, info_string) 


if __name__ == '__main__': 
    print('Keras version: {}'.format(keras_version)) 
    num_folds = 3 
    info_string, models = run_cross_validation_create_models(num_folds) 
    run_cross_validation_process_test(info_string, models) 

답변

1

오류가 read_and_normalize_train_data의 기능에() 수정입니다

train_target = np_utils.to_categorical(train_target, 8) 

train_target = np_utils.to_categorical(train_target, 2) 

다음 작동합니다.